Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001107

ABSTRACT

The accuracy of the signal within a driving chain for the rate-integrating hemispherical resonator gyro (RI-HRG) plays a crucial role in the overall performance of the gyro. In this paper, a notable and effective method is proposed to realize the identification and compensation of the unbalanced error in the driving chain for the RI-HRG that improved the performance of the multi-loop control applied in the RI-HRG. Firstly, the assembly inclination and eccentricity error of the hemispherical resonator, the inconsistent metal conductive film layer resistance error of the resonator, the coupling error of the driving chain, and the parameter inconsistency error of the circuit components were considered, and the impact of these errors on the multi-loop control applied in the RI-HRG were analyzed. On this basis, the impact was further summarized as the unbalanced error in the driving chain, which included the unbalanced gain error, equivalent misalignment angle, and unbalanced equivalent misalignment angle error. Then, a model between the unbalanced error in the driving chain and a non-ideal precession angular rate was established, which was applicable to both single channel asynchronous control and dual channel synchronous control of the RI-HRG. Further, an unbalanced error identification and compensation method is proposed by utilizing the RI-HRG output with the virtual precession control. Finally, the effectiveness of the proposed method was verified through simulation and experiments in kind. After error compensation, the zero-bias instability of the RI-HRG was improved from 3.0950°/h to 0.0511°/h. The results of experiments in kind demonstrated that the proposed method can effectively suppress the non-ideal angular rate output caused by the unbalanced error in the driving chain for the RI-HRG, thereby further improving the overall performance of the RI-HRG.

2.
Nanoscale ; 16(28): 13247-13299, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38940686

ABSTRACT

Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.

3.
Article in English | MEDLINE | ID: mdl-38907838

ABSTRACT

Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.

4.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915718

ABSTRACT

Background: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.

5.
Biomaterials ; 311: 122675, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943822

ABSTRACT

Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.

6.
Appl Opt ; 63(13): 3702-3711, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856557

ABSTRACT

The existing design methods for long-focal-length unobscured freeform systems rarely consider the imaging quality requirements and volume constraints simultaneously, causing most of the final designs to not fulfill the requirement of light weight. This study proposes a method to automatically design a long-focal-length unobscured reflective system that satisfies volume constraints while maintaining high imaging quality. First, a method to adaptively set the structural parameter range is proposed, and multiple parameters for different systemic specifications can be effectively calculated within it. Subsequently, the systemic volume and area functions are constructed using the ray tracing method, where the tilt angles, distances between mirrors, and radii of curvature of the mirrors are chosen as the optimization parameters. Third, a comprehensive objective function is jointly established combining ray obscuration and convergence as performance evaluation factors. Then, the structural parameters of a long-focal-length unobscured system with small volume are easily obtained via the simulated annealing method. Finally, the improved W-W method is used to further enhance the imaging quality of the system, and an unobscured freeform reflective optical system with three mirrors is automatically generated. Experimental results demonstrate that our method can automatically calculate the parameter ranges to facilitate the search for structural parameters, and effectively design the long-focal-length unobscured freeform systems with small volume and high imaging quality.

7.
J Clin Med ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792368

ABSTRACT

Objectives: This retrospective case-controlled study aimed to evaluate the association between the severity of fall-related injuries and fall-risk-increasing drugs (FRIDs) in hospitalized patients. Methods: Data were collected from Changhua Christian Hospital, Taiwan, of all adult inpatients who experienced falls between January 2017 and December 2021, and were divided into two groups based on whether they sustained severe fall-related injuries. Retrospective data that may affect the severity of fall-related injuries and the use of FRIDs were investigated. Results: Among 1231 documented cases of falls, 26 patients sustained severe fall-related injuries. Older patients and those with osteoporosis were more susceptible to more severe injuries from a fall. The use of mobility aids and osteoporosis medications showed protective effects against fall injuries. No significant association was observed between fall-related injuries and comorbidities or FRIDs. Multivariate analysis confirmed the inverse correlation between the use of mobility aids, osteoporosis medications, and fall severity. Patients with osteoporosis exhibited significantly higher odds of sustaining more severe injuries with a fall (odds ratio = 3.02, 95% confidence interval: 1.21-7.53). Conclusions: This study highlights the importance of addressing risk factors associated with fall severity among hospitalized patients. Providing mobility aids to persons at greater risk.

8.
Emerg Microbes Infect ; 13(1): 2359004, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38779718

ABSTRACT

As SARS-CoV-2 continues to spread and mutate, tracking the viral evolutionary trajectory and understanding the functional consequences of its mutations remain crucial. Here, we characterized the antibody evasion, ACE2 receptor engagement, and viral infectivity of the highly mutated SARS-CoV-2 Omicron subvariant BA.2.87.1. Compared with other Omicron subvariants, including EG.5.1 and the current predominant JN.1, BA.2.87.1 exhibits less immune evasion, reduced viral receptor engagement, and comparable infectivity in Calu-3 lung cells. Intriguingly, two large deletions (Δ15-26 and Δ136-146) in the N-terminal domain (NTD) of the spike protein facilitate subtly increased antibody evasion but significantly diminish viral infectivity. Collectively, our data support the announcement by the USA CDC that the public health risk posed by BA.2.87.1 appears to be low.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19/virology , COVID-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Cell Line , Mutation , Neutralization Tests
9.
BMC Oral Health ; 24(1): 406, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556858

ABSTRACT

BACKGROUND: Recent studies have indicated that microRNA (miRNA) expression in tumour tissues has prognostic significance in Tongue squamous cell carcinoma (TSCC) patients. This study explored the possible prognostic value of miRNAs for TSCC based on published research. METHODS: A comprehensive literature search of multiple databases was conducted according to predefined eligibility criteria. Data were extracted from the included studies by two researchers, and HR results were determined based on Kaplan‒Meier curves according to the Tierney method. The Newcastle‒Ottawa Scale (NOS) and GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pro-GDT were applied to assess the quality of all studies. Publication bias was estimated by funnel plot, Egger's rank correlation test and sensitivity analysis. RESULTS: Eleven studies (891patients) were included, of which 6 reported up-regulated miRNAs and 7 mentioned down-regulated miRNAs. The pooled hazard ratio (HR) from the prognostic indicator overall survival (OS) was 1.34 (1.25-1.44), p < 0.00001, indicating a significant difference in miRNA expression between TSCC patients with better or worse prognosis. CONCLUSION: MiRNAs may have high prognostic value and could be used as prognostic biomarkers of TSCC.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Tongue Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Prognosis , Tongue Neoplasms/genetics , Tongue Neoplasms/pathology , Biomarkers, Tumor/analysis , MicroRNAs/genetics , MicroRNAs/metabolism , Tongue/pathology
10.
Bioelectrochemistry ; 157: 108668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387209

ABSTRACT

Fe-Co@CNF was synthesized by electrospinning technology, and AuNPs was loaded onto Fe-Co@CNF by in-situ reduction to obtain Fe-Co@CNF@AuNPs composite material, which was used as the working electrode based on Au-S bond cooperation. The tetracycline electrochemical sensing interface Fe-Co@CNF@AuNPs@Apt was constructed by connecting mercaptoylated tetracycline (TC) aptamers on Fe-Co@CNF@AuNPs surface. The morphology and composition of Fe-Co@CNF@AuNPs composites were characterized by SEM, TEM, EDS, XRD and XPS, and the electrochemical properties of tetracycline were evaluated by CV and DPV. The results showed that the addition of Fe and Co did not destroy the structure of the original carbon nanofibers, and their synergistic effect enhanced the electrocatalytic performance, effective electrode area and electron transfer ability of carbon nanofibers. AuNPs are evenly distributed over the fibers, which effectively improves the electrical conductivity of the material. Under the optimal conditions, the theoretical detection limit of tetracycline was 0.213 nM, and the linear detection range was 5.12-10 mM, which could successfully detect tetracycline in milk.


Subject(s)
Metal Nanoparticles , Nanofibers , Carbon/chemistry , Gold/chemistry , Nanofibers/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents , Tetracycline , Electrochemical Techniques , Electrodes
11.
Autophagy ; 20(6): 1457-1458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38348842

ABSTRACT

The lysosomal degradation of the endoplasmic reticulum (ER), known as "reticulophagy", is important for protein quality control and organelle turnover. Here we present a noncanonical reticulophagy occurring at ER exit sites (ERESs) induced by the misfolded SERPINA1/α1-antitrypsin (AAT) mutant, Z-AAT. The accumulation of Z-AAT arrests ER-to-Golgi transport, and recruits V-ATPase and ATG16L1 to mediate LC3C decoration of ERESs. Consequently, the receptor RETREG1/FAM134B-2 is recruited by lipidated LC3C to initiate reticulophagy. Furthermore, the blockade of ER export acts as a universal signal to activate reticulophagy mediated by the V-ATPase-ATG16L1-LC3C axis. This study sheds light on the mechanism of how ERESs switch from ER export to reticulophagy for quality control.


Subject(s)
Autophagy-Related Proteins , Endoplasmic Reticulum , Microtubule-Associated Proteins , Vacuolar Proton-Translocating ATPases , Endoplasmic Reticulum/metabolism , Humans , Autophagy-Related Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Golgi Apparatus/metabolism , Autophagy/physiology , alpha 1-Antitrypsin/metabolism , Animals , Membrane Proteins/metabolism , Lysosomes/metabolism , Macroautophagy/physiology , Signal Transduction , Intracellular Signaling Peptides and Proteins
12.
ACS Appl Mater Interfaces ; 16(4): 4462-4477, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240605

ABSTRACT

Critical-size bone defects are a common and intractable clinical problem that typically requires filling in with surgical implants to facilitate bone regeneration. Considering the limitations of autologous bone and allogeneic bone in clinical applications, such as secondary damage or immunogenicity, injectable microhydrogels with osteogenic and angiogenic effects have received considerable attention. Herein, polydopamine (PDA)-functionalized strontium alginate/nanohydroxyapatite (Sr-Alg/nHA) composite microhydrogels loaded with vascular endothelial growth factor (VEGF) were prepared using microfluidic technology. This composite microhydrogel released strontium ions stably for at least 42 days to promote bone formation. The PDA coating can release VEGF in a controlled manner, effectively promote angiogenesis around bone defects, and provide nutritional support for new bone formation. In in vitro experiments, the composite microhydrogels had good biocompatibility. The PDA coating greatly improves cell adhesion on the composite microhydrogel and provides good controlled release of VEGF. Therefore, this composite microhydrogel effectively promotes osteogenic differentiation and vascularization. In in vivo experiments, composite microhydrogels were injected into critical-size bone defects in the skull of rats, and they were shown by microcomputed tomography and tissue sections to be effective in promoting bone regeneration. These findings demonstrated that this novel microhydrogel effectively promotes bone formation and angiogenesis at the site of bone defects.


Subject(s)
Indoles , Osteogenesis , Polymers , Vascular Endothelial Growth Factor A , Rats , Animals , Vascular Endothelial Growth Factor A/pharmacology , Alginates/pharmacology , X-Ray Microtomography , Angiogenesis , Bone Regeneration , Skull , Hydroxyapatites/pharmacology , Strontium/pharmacology
13.
Chemosphere ; 351: 141185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215831

ABSTRACT

Chromium-containing wastewater causes serious environmental pollution due to the harmfulness of Cr(VI). The ferrite process is typically used to treat chromium-containing wastewater and recycle the valuable chromium metal. However, the current ferrite process is unable to fully transform Cr(VI) into chromium ferrite under mild reaction conditions. This paper proposes a novel ferrite process to treat chromium-containing wastewater and recover valuable chromium metal. The process combines FeSO4 reduction and hydrothermal treatment to remove Cr(VI) and form chromium ferrite composites. The Cr(VI) concentration in the wastewater was reduced from 1040 mg L-1 to 0.035 mg L-1, and the Cr(VI) leaching toxicity of the precipitate was 0.21 mg L-1 under optimal hydrothermal conditions. The precipitate consisted of micron-sized ferrochromium spinel multiphase with polyhedral structure. The mechanism of Cr(VI) removal involved three steps: 1) partial oxidation of FeSO4 to Fe(III) hydroxide and oxy-hydroxide; 2) reduction of Cr(VI) by FeSO4 to Cr(III) and Fe(III) precipitates; 3) transformation and growth of the precipitates into chromium ferrite composites. This process meets the release standards of industrial wastewater and hazardous waste and can improve the efficiency of the ferrite process for toxic heavy metal removal.


Subject(s)
Aluminum Oxide , Chromium Alloys , Magnesium Oxide , Wastewater , Water Pollutants, Chemical , Ferric Compounds/chemistry , Chromium/chemistry , Hydroxides , Water Pollutants, Chemical/analysis
14.
Dev Cell ; 58(23): 2761-2775.e5, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37922908

ABSTRACT

Endoplasmic reticulum (ER)-phagy is crucial to regulate the function and homeostasis of the ER via lysosomal degradation, but how it is initiated is unclear. Here we discover that Z-AAT, a disease-causing mutant of α1-antitrypsin, induces noncanonical ER-phagy at ER exit sites (ERESs). Accumulation of misfolded Z-AAT at the ERESs impairs coat protein complex II (COPII)-mediated ER-to-Golgi transport and retains V0 subunits that further assemble V-ATPase at the arrested ERESs. V-ATPase subsequently recruits ATG16L1 onto ERESs to mediate in situ lipidation of LC3C. FAM134B-II is then recruited by LC3C via its LIR motif and elicits ER-phagy leading to efficient lysosomal degradation of Z-AAT. Activation of this ER-phagy mediated by the V-ATPase-ATG16L1-LC3C axis (EVAC) is also triggered by blocking ER export. Our findings identify a pathway which switches COPII-mediated transport to lysosomal degradation for ER quality control.


Subject(s)
Adenosine Triphosphatases , Lysosomes , Adenosine Triphosphatases/metabolism , Lysosomes/metabolism , Protein Transport/physiology , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Autophagy
15.
Heliyon ; 9(10): e20840, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867792

ABSTRACT

The rapid development of power-intensive and flexible electronic devices requires thinner heat-dissipation devices with better thermal performance. Ultra-thin flat heat pipe (UTFHP) with striped wick structure is a promising candidate for this application, but its wick structure and thermal performance have not yet been thoroughly studied and optimized for the small concentrated heat source, which is commonly encountered in electronics. In this study, several concentrated striped composite wick (CSCW) structures for 0.6 mm thick UTFHPs are proposed and experimentally investigated. The CSCW consists of copper foam with striped passages converging in the heating zone and double layers of copper screen mesh. The thermal performance of UTFHPs with various composite wick structures is experimentally evaluated. UTFHPs with the proposed structures are also compared with a UTFHP with a more conventional parallel passage composite wick structure. Experimental results show that the CSCW with the hollow structure at the evaporation section is preferred, due to the directed liquid working medium reflux and a large vapor-liquid evaporation interface. Besides, the passage width of the copper foam significantly affects the thermal performance. With the best-performing wick structure, the UTFHP gives the lowest thermal resistance of 0.79 °C/W at a heat load of 23.34 W. Its effective thermal conductivity is approximately 7 times that of copper. The proposed striped wick structure for UTFHPs provides an alternative to handle the hot-spot challenge of electronic devices.

16.
Sci Rep ; 13(1): 14380, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658229

ABSTRACT

Falls are a serious public health problem in the aging population because of the associated clinical and socioeconomic impact. Although previous studies have investigated fall-risk-increasing drugs (FRIDs), few studies have focused on dosage among adult inpatients. This study aimed to evaluate associations between fall risk and dosage of different FRIDs classes in hospital inpatients. Inpatients who experienced falls at medical or surgical wards of Changhua Christian Hospital from January 2017 to December 2021 were identified and matched by age, sex, and hospital ward to randomly selected controls (four per case). Anonymous patient data were extracted from the hospital medical data repository, including demographic characteristics, comorbidities, fall-risk scores, and drug prescriptions. Medication dosages were computed using the anatomical therapeutic chemical classification and the defined daily dose system of the World Health Organization. A total of 852 cases and 3408 controls were identified as eligible. Reducing the use of CNS-active medications, administering lower doses of sedative-hypnotics, prescribing sufficient dopaminergic anti-Parkinson agents, and using NSAIDs instead of opioids are imperative in preventing falls among hospitalized patients according to the findings in the study.


Subject(s)
Aging , Inpatients , Adult , Humans , Aged , Risk Factors , Analgesics, Opioid , Anti-Inflammatory Agents, Non-Steroidal
17.
Front Psychiatry ; 14: 1118602, 2023.
Article in English | MEDLINE | ID: mdl-37674549

ABSTRACT

Introduction: There is increasing evidence that suicidal individuals exhibit an attentional bias toward negative or suicide-related stimuli, but the underlying neural mechanism remains unclear. This study aimed to investigate the neural mechanism of attentional bias toward emotional stimuli using a modified emotional Stroop task (EST) and to further explore the influencing factor of abnormal attention processing by identifying whether mental disorders or suicidal ideation contributes to attention processing disruptions. Methods: Fourteen students with suicidal ideation and mental disorders (SIMDs), sixteen students with suicidal ideation but no mental disorders (SINMDs), and fourteen sex- and age-matched healthy controls (HCs) were recruited. Moreover, 64-channel electroencephalography (EEG) data and behavioral responses were recorded simultaneously during the EST. Participants were instructed to respond to the ink color for various types of words (positive, neutral, negative, and suicide) while ignoring their meanings. Event-related potentials (ERPs) were analyzed to evaluate attention to the stimuli. Spearman correlations between clinical psychological assessment scales and ERP signatures were analyzed to determine the risk factors for suicide. Results: The results showed that the SIMD group exhibited longer early posterior negativity (EPN) latency compared to the SINMD and HC groups, indicating that early attention processing was affected during the EST, and the automatic and rapid processing of emotional information decreased. Furthermore, P300 latency for positive words was positively correlated with current suicidal ideation in the SINMD group, suggesting that delayed responses or additional processing to positive information may lead individuals with suicidal ideation to an incorrect interpretation of external events. Conclusions: Generally, our findings suggest that the neural characteristics of the SIMD group differed from those of the SINMD and HC groups. EPN latency and P300 latency during the EST may be suicide-related neurophysiological indicators. These results provide neurophysiological signatures of suicidal behavior.

18.
Appl Opt ; 62(15): 3892-3903, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37706698

ABSTRACT

Design of an off-axis system using the Wassermann-Wolf (W-W) differential equations can effectively eliminate the spherical aberration and coma problem; however, it is complicated and time consuming to calculate the discrete point coordinates on the freeform mirror surfaces due to multiple numbers of reference system transformation in the design process. This paper presents an improved W-W-differential-equations-based design method for off-axis three-mirror freeform systems. First, to reduce the number of coordinate transformations, a geometric relationship between different optical rays in an off-axis system is established using the distance between the central points of adjacent mirrors. Second, a three-dimensional rotation matrix is used to associate the optical paths passing through adjacent mirrors in different reference coordinate systems, and new simplified W-W differential equations based on the ray vectors are constructed. The experimental results show that our method can easily and effectively design off-axis three-mirror freeform systems with different parameters and structures, and the designed systems have good imaging quality.

19.
Entropy (Basel) ; 25(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761598

ABSTRACT

Topology optimization (TO) is an effective approach to designing novel and efficient heat transfer devices. However, the TO of conjugate heat transfer has been essentially limited to laminar flow conditions only. The present study proposes a framework for TO involving turbulent conjugate heat transfer based on the variable density method. Different from the commonly used and oversimplified Darcy model, this approach is based on the more accurate and widely accepted k-ε model to optimize turbulent flow channels. We add penalty terms to the Navier-Stokes equation, turbulent kinetic energy equation, and turbulent energy dissipation equation, and use interpolation models for the thermal properties of materials. A multi-objective optimization function, aiming to minimize the pressure drop and the average temperature, is set up to balance the thermal and hydraulic performance. A case study is conducted to compare various optimization methods in the turbulent regime, and the results show that the present method has substantially higher optimization effectiveness while remaining computationally inexpensive.

20.
Opt Lett ; 48(15): 4049-4052, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527115

ABSTRACT

The wavemeter is an important instrument for spectrum analysis, widely used in spectral calibration, remote sensing, atomic physics, and high-precision metrology. However, near-infrared (NIR) wavemeters require infrared-sensitive detectors that are expensive and less sensitive compared to silicon-based visible light detectors. To circumvent these limitations, we propose an NIR speckle wavemeter based on nonlinear frequency conversion. We combine a scattering medium and the deep learning technique to invert the nonlinear mapping of the NIR wavelength and speckles in the visible wave band. With the outstanding performance of deep learning, a high-precision wavelength resolution of 1 pm is achievable in our experiment. We further demonstrate the robustness of our system and show that the recognition of power parameters and multi-spectral lines is also feasible. The proposed method offers a convenient and flexible way to measure NIR light, and it offers the possibility of cost reduction in miniaturized wavemeter systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...