Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plant Physiol Biochem ; 174: 51-62, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35144110

ABSTRACT

Sea buckthorn, an important ecological and economical tree species, have remarkable drought and salt resistance. The plant-specific transcription factor TCPs play important roles in plant growth, development, and stress responses. However, in sea buckthorn, the molecular mechanism of TCP proteins and their involvement in drought stress are unknown. Here, we found that the expression of HrTCP20 was significantly up-regulated in sea buckthorn under drought stress. Overexpression of HrTCP20 in Arabidopsis thaliana showed that the superoxide dismutase (SOD), polyphenol oxidase (POD), and chlorophyll (SPAD) content was significantly increased by 1.37 and 1.35 times. However, the malondialdehyde (MDA) content decreased by 0.51 times. Our studies further confirmed that silencing HrTCP20 by virus-induced gene silencing (VIGS) led to a decrease in the content of defense enzymes, relative water content (RWC), and an increase of relative electrical conductivity (REC). Silencing HrTCP20 also caused the jasmonic acid (JA) content to decrease in the VIGS-treated tree. Interestingly, we found that JA accumulation content and the expression of HrLOX2, an essential enzyme for JA synthesis, was significantly inhibited in HrTCP20-silenced sea buckthorn under drought stress. Yeast two-hybrid analysis also showed that HrTCP20 is directly bound to HrLOX2. Taken together, the HrTCP20 transcription factor was a positive regulator in drought resistance of sea buckthorn. Further, our findings will provide comprehensive insights into the forest tree defence system of drought stress.


Subject(s)
Hippophae , Cyclopentanes , Droughts , Hippophae/genetics , Oxylipins , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...