Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 302: 134719, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35483663

ABSTRACT

Electroplating industry is an important application field of per- and polyfluoroalkyl substances (PFASs) as the chromium mist suppressants. 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES) and perfluorooctanesulfonate (PFOS) have been the two widely used mist suppressants, and after the ban of PFOS, 6:2 Cl-PFAES will become the dominant suppressant. The behavior and mechanisms of 6:2 Cl-PFAES in the electroplating industry and the receiving environment were studied and compared with PFOS. 6:2 Cl-PFAES behaved similarly with PFOS due to their similar chemical structure. However, some difference exists for the relatively stronger hydrophobicity of 6:2 Cl-PFAES. Up to 35.7 mg/L of PFOS and 13.4 mg/L of 6:2 Cl-PFAES were found in the industrial wastewater influents, and were effectively reduced to 0.3-0.8 mg/L by the interaction with chromium hydroxide through hydrophobic interaction and ligand exchange. The stronger hydrophobicity of 6:2 Cl-PFAES than PFOS resulted in its accumulation in the surface of foams and comparable or less removal during the industrial and municipal wastewater treatment. 6:2 Cl-PFAES exhibited higher bioaccumulation potential than PFOS in the surface water. 6:2 Cl-PFAES emitted by both mists and water may pose health risks to humans. More attentions towards 6:2 Cl-PFAES are needed after the replacement of PFOS by it in the electroplating industry as a global contaminant of emerging concerns.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonates , Alkanesulfonic Acids/analysis , China , Chromium , Electroplating , Ether , Ethers , Fluorocarbons/analysis , Humans , Water
2.
Mikrochim Acta ; 187(4): 205, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152683

ABSTRACT

A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 µM for Cu2+ and 0.02-3.0 µM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.

3.
ACS Appl Mater Interfaces ; 5(16): 8058-66, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23899537

ABSTRACT

A functionalizable organosiliceous hybrid magnetic material was facilely constructed by surface polymerization of octavinyl polyhedral oligomeric silsesquioxane (POSS) on the Fe3O4 nanoparticles. The resultant Fe3O4@POSS was identified as a mesoporous architecture with an average particle diameter of 20 nm and high specific surface area up to 653.59 m(2) g(-1). After it was tethered with an organic chain containing dithiol via thiol-ene addition reaction, the ultimate material (Fe3O4@POSS-SH) still have moderate specific area (224.20 m(2) g(-1)) with almost identical porous morphology. It turns out to be a convenient, efficient single adsorbent for simultaneous elimination of inorganic heavy metal ions and organic dyes in simulate multicomponent wastewater at ambient temperature. The Fe3O4@POSS-SH nanoparticles can be readily withdrawn from aqueous solutions within a few seconds under moderate magnetic field and exhibit good stability in strong acid and alkaline aqueous matrices. Contaminants-loaded Fe3O4@POSS-SH can be easily regenerated with either methanol-acetic acid (for organic dyes) or hydrochloric acid (for heavy metal ions) under ultrasonication. The renewed one keeps appreciable adsorption capability toward both heavy metal ions and organic dyes, the removal rate for any of the pollutants exceeds 92% to simulate wastewater with multiple pollutants after repeated use for 5 cycles. Beyond the environmental remediation function, thanks to the pendant vinyl groups, the Fe3O4@POSS derived materials rationally integrating distinct or versatile functions could be envisaged and consequently a wide variety of applications may emerge.


Subject(s)
Environmental Restoration and Remediation , Magnetite Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Toluene/analogs & derivatives , Toluene/chemistry , Wastewater/chemistry , Water Pollutants/chemistry , Water Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...