Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Comput Biol Med ; 175: 108550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701590

ABSTRACT

BACKGROUND AND OBJECTIVE: Complete denture is a common restorative treatment in dental patients and the design of the core components (major connector and retentive mesh) of complete denture metal base (CDMB) is the basis of successful restoration. However, the automated design process of CDMB has become a challenging task primarily due to the complexity of manual interaction, low personalization, and low design accuracy. METHODS: To solve the existing problems, we develop a computer-aided Segmentation Network-driven CDMB design framework, called CDMB-SegNet, to automatically generate personalized digital design boundaries for complete dentures of edentulous patients. Specifically, CDMB-SegNet consists of a novel upright-orientation adjustment module (UO-AM), a dental feature-driven segmentation network, and a specific boundary-optimization design module (BO-DM). UO-AM automatically identifies key points for locating spatial attitude of the three-dimensional dental model with arbitrary posture, while BO-DM can result in smoother and more personalized designs for complete denture. In addition, to achieve efficient and accurate feature extraction and segmentation of 3D edentulous models with irregular gingival tissues, the light-weight backbone network is also incorporated into CDMB-SegNet. RESULTS: Experimental results on a large clinical dataset showed that CDMB-SegNet can achieve superior performance over the state-of-the-art methods. Quantitative evaluation (major connector/retentive mesh) showed improved Accuracy (98.54 ± 0.58 %/97.73 ± 0.92 %) and IoU (87.42 ± 5.48 %/70.42 ± 7.95 %), and reduced Maximum Symmetric Surface Distance (4.54 ± 2.06 mm/4.62 ± 1.68 mm), Average Symmetric Surface Distance (1.45 ± 0.63mm/1.28 ± 0.54 mm), Roughness Rate (6.17 ± 1.40 %/6.80 ± 1.23 %) and Vertices Number (23.22 ± 1.85/43.15 ± 2.72). Moreover, CDMB-SegNet shortened the overall design time to around 4 min, which is one tenth of the comparison methods. CONCLUSIONS: CDMB-SegNet is the first intelligent neural network for automatic CDMB design driven by oral big data and dental features. The designed CDMB is able to couple with patient's personalized dental anatomical morphology, providing higher clinical applicability compared with the state-of-the-art methods.


Subject(s)
Denture, Complete , Humans , Denture Design/methods , Neural Networks, Computer , Computer-Aided Design
2.
Bioact Mater ; 39: 25-40, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38800719

ABSTRACT

Zirconium-based metallic glasses (Zr-MGs) are demonstrated to exhibit high mechanical strength, low elastic modulus and excellent biocompatibility, making them promising materials for endosseous implants. Meanwhile, tantalum (Ta) is also well known for its ideal corrosion resistance and biological effects. However, the metal has an elastic modulus as high as 186 GPa which is not comparable to the natural bone (10-30 GPa), and it also has a relative high cost. Here, to fully exploit the advantages of Ta as endosseous implants, a small amount of Ta (as low as 3 at. %) was successfully added into a Zr-MG to generate an advanced functional endosseous implant, Zr58Cu25Al14Ta3 MG, with superior comprehensive properties. Upon carefully dissecting the atomic structure and surface chemistry, the results show that amorphization of Ta enables the uniform distribution in material surface, leading to a significantly improved chemical stability and extensive material-cell contact regulation. Systematical analyses on the immunological, angiogenesis and osteogenesis capability of the material are carried out utilizing the next-generation sequencing, revealing that Zr58Cu25Al14Ta3 MG can regulate angiogenesis through VEGF signaling pathway and osteogenesis via BMP signaling pathway. Animal experiment further confirms a sound osseointegration of Zr58Cu25Al14Ta3 MG in achieving better bone-implant-contact and inducing faster peri-implant bone formation.

3.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675003

ABSTRACT

(1) Background: Various 3D printers are available for dental practice; however, a comprehensive accuracy evaluation method to effectively guide practitioners is lacking. This in vitro study aimed to propose an optimized method to evaluate the spatial trueness of a 3D-printed dental model made of photopolymer resin based on a special structurized dental model, and provide the preliminary evaluation results of six 3D printers. (2) Methods: A structurized dental model comprising several geometrical configurations was designed based on dental crown and arch measurement data reported in previous studies. Ninety-six feature sizes can be directly measured on this original model with minimized manual measurement errors. Six types of photo-curing 3D printers, including Objet30 Pro using the Polyjet technique, Projet 3510 HD Plus using the Multijet technique, Perfactory DDP and DLP 800d using the DLP technique, Form2 and Form3 using the SLA technique, and each printer's respective 3D-printable dental model materials, were used to fabricate one set of physical models each. Regarding the feature sizes of the simulated dental crowns and dental arches, linear measurements were recorded. The scanned digital models were compared with the design data, and 3D form errors (including overall 3D deviation; flatness, parallelism, and perpendicularity errors) were measured. (3) Results: The lowest overall 3D deviation, flatness, parallelism, and perpendicularity errors were noted for the models printed using the Objet30 Pro (overall value: 45 µm), Form3 (0.061 ± 0.019 mm), Objet30 Pro (0.138 ± 0.068°), and Projet 3510 HD Plus (0.095 ± 0.070°), respectively. In color difference maps, different deformation patterns were observed in the printed models. The feature size proved most accurate for the Objet30 Pro fabricated models (occlusal plane error: 0.02 ± 0.36%, occlusogingival direction error: -0.06 ± 0.09%). (4) Conclusions: The authors investigated a novel evaluation approach for the spatial trueness of a 3D-printed dental model made of photopolymer resin based on a structurized dental model. This method can objectively and comprehensively evaluate the spatial trueness of 3D-printed dental models and has a good repeatability and generalizability.

4.
J Esthet Restor Dent ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634200

ABSTRACT

OBJECTIVE: This study aimed to present three indicators that represent the proximal contact area gap change under intercuspal occlusion and to see if and how these indicators influence food impaction with tight proximal contact. MATERIALS AND METHODS: Ninety volunteers were recruited for bite force measurement and intraoral scanning. Three-dimensional surface data and buccal bite data were obtained for 60 impacted and 60 non-impacted teeth. The scanning data were imported into the Geomagic Studio 2013 to measure three indicators, which included the gap change maximum (Δdm, µm), the buccolingual position of Δdm (P), and the gap expanded buccolingual range (S, mm). The difference between two groups of three indicators and their relationship with food impaction with tight proximal contact were analyzed by the t test, the Pearson chi-squared test, the nonparametric Mann-Whitney U test, and the binary logistic regression analysis (a = 0.05). RESULTS: All indicators (Δdm, P, and S) were statistically different (p < 0.001, p = 0.002, and p < 0.001) in the impacted and non-impacted groups. Food impaction with tight proximal contact was affected by Δdm and S (p < 0.001, p = 0.039), but not by P (p = 0.409). CONCLUSION: The excessive increase of the gap change maximum and the gap expanded buccolingual range under bite force promoted the occurrence of food impaction with tight proximal contact. CLINICAL SIGNIFICANCE: The use of intraoral scanning to measure the characteristics of the proximal contact area gap change under bite force may help to deepen our understanding of the pathogenesis of food impaction with tight proximal contact. Importantly it can provide a reference basis for individualizing and quantifying occlusal adjustment treatment.

5.
Article in English | MEDLINE | ID: mdl-38442048

ABSTRACT

Grading laryngeal squamous cell carcinoma (LSCC) based on histopathological images is a clinically significant yet challenging task. However, more low-effect background semantic information appeared in the feature maps, feature channels, and class activation maps, which caused a serious impact on the accuracy and interpretability of LSCC grading. While the traditional transformer block makes extensive use of parameter attention, the model overlearns the low-effect background semantic information, resulting in ineffectively reducing the proportion of background semantics. Therefore, we propose an end-to-end network with transformers constrained by learned-parameter-free attention (LA-ViT), which improve the ability to learn high-effect target semantic information and reduce the proportion of background semantics. Firstly, according to generalized linear model and probabilistic, we demonstrate that learned-parameter-free attention (LA) has a stronger ability to learn highly effective target semantic information than parameter attention. Secondly, the first-type LA transformer block of LA-ViT utilizes the feature map position subspace to realize the query. Then, it uses the feature channel subspace to realize the key, and adopts the average convergence to obtain a value. And those construct the LA mechanism. Thus, it reduces the proportion of background semantics in the feature maps and feature channels. Thirdly, the second-type LA transformer block of LA-ViT uses the model probability matrix information and decision level weight information to realize key and query, respectively. And those realize the LA mechanism. So, it reduces the proportion of background semantics in class activation maps. Finally, we build a new complex semantic LSCC pathology image dataset to address the problem, which is less research on LSCC grading models because of lacking clinically meaningful datasets. After extensive experiments, the whole metrics of LA-ViT outperform those of other state-of-the-art methods, and the visualization maps match better with the regions of interest in the pathologists' decision-making. Moreover, the experimental results conducted on a public LSCC pathology image dataset show that LA-ViT has superior generalization performance to that of other state-of-the-art methods.

6.
BMC Oral Health ; 23(1): 880, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978507

ABSTRACT

BACKGROUND: In clinical practice, control of the marginal fit of fixed dental prostheses is hindered by evaluation method, which needs to be further improved to increase its clinical applicability. This study aimed to quantitatively analyze the absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated by conventional and digital technologies using a digital measurement method based on the digital impression technology and open source software. METHODS: A digital workflow and the conventional impression combined with the lost-wax heat-pressed technique were adopted to separately fabricate 10 glass ceramic fixed dental prostheses. Three-dimensional data for the abutments, fixed dental prostheses, and fixed dental prostheses seated on the abutments, were obtained using a dental scanner. The two datasets were aligned using registration technology, specifically "multi-points registration" and "best fit alignment," by reverse engineering software. Subsequently, the three-dimensional seated fit between the fixed dental prostheses and abutments were reconstructed. The margin of the abutment and crown was extracted using edge-sharpening and other functional modules, and the absolute marginal discrepancy was measured by the distance between the margin of the abutment and crown. One-way analysis of variance was used to statistically analyze the measurement results. RESULTS: Using the digital measurement method, the mean value of absolute marginal discrepancy for fixed dental prostheses fabricated by the conventional method was 106.69 ± 6.46 µm, and that fabricated by the digital workflow was 102.55 ± 6.96 µm. The difference in the absolute marginal discrepancy of three-unit all-ceramic fixed dental prostheses fabricated using the two methods was not statistically significant (p > 0.05). CONCLUSIONS: The digital measurement method for absolute marginal discrepancy was preliminarily established based on open source software and applied in three-unit ceramic fixed dental prostheses. The absolute marginal discrepancy of three-unit ceramic fixed dental prostheses fabricated using digital technology was comparable to that of conventional technique.


Subject(s)
Dental Prosthesis Design , Digital Technology , Humans , Dental Prosthesis Design/methods , Dental Marginal Adaptation , Computer-Aided Design , Ceramics , Crowns , Dental Impression Technique
7.
Article in English | MEDLINE | ID: mdl-37933413

ABSTRACT

OBJECTIVES: This study aimed to develop a structured light scanning system with a planar mirror to enhance the digital full-arch implant impression accuracy and to compare it with photogrammetry and intraoral scanner methods. MATERIALS AND METHODS: An edentulous maxillary stone cast with six scan bodies was scanned as the reference model using a laboratory scanner. Three scanning modalities were compared (n = 10): (1) self-developed structured light scanning with a mirror (SSLS); (2) intraoral scanner (IOS); and (3) photogrammetry system (PG). The scanners were stopped for 1 min after each scan. Six scan bodies were analysed within each scan model. Linear deviations between the scan bodies (1-2, 1-3, 1-4, 1-5, and 1-6) and 3D mucosal deviations were established. The overall deviation was calculated as the mean of all linear deviations. "Trueness" represented the discrepancy between the test and reference files, while "precision" denoted the consistency among the test files. Kruskal-Wallis and Mann-Whitney U tests were used for statistical analyses. RESULTS: Significant overall linear discrepancies were noted among the SSLS, PG, and IOS groups (p < .001). SSLS showed the best overall trueness and precision (6.6, 5.7 µm), followed by PG (58.4, 6.8 µm) and IOS (214.6, 329.1 µm). For the 3D mucosal deviation, the trueness (p < .001) and precision (p < .001) of the SSLS group were significantly better than those of the IOS group. CONCLUSIONS: The SSLS exhibited higher accuracy in determining the implant positions than the PG and IOS. Additionally, it demonstrated better accuracy in capturing the mucosa than IOS.

8.
Materials (Basel) ; 16(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834715

ABSTRACT

In severe service environments, the presence of high local residual stress, significant organizational gradient, and nonlinear changes in material properties often leads to stress corrosion cracking (SCC) in dissimilar metal welded (DMW) joints. To accurately predict the crack growth rate, researching the initiation and propagation behavior of SCC cracks in DMW joints under residual stress (RS) is one of the most important methods to ensure the safe operation of nuclear power plants. Using the extended finite element method (XFEM), the crack propagation behaviors in DMW joints under different RS states are predicted and compared. The effects of RS, crack location, and initial crack length on crack propagation behavior are investigated. The crack in a DMW joint without RS deflects to the material of low yield strength. High residual stress urges the crack growing direction to deflect toward the material of high yield strength. Young's modulus has little impact on the crack deflection paths. The distance between the specimen symmetric line and the boundary line has little effect on the crack initiation and propagation within the RS field. A long initial crack is more likely to initiate and propagate than a short crack. To a long crack and the crack that is far from the interface of two materials, the impact of residual stress on the crack propagation path is significant when it is located in a material with high yield strength, while when the initial crack is located in the material with low yield strength, RS has a great influence on the deflection of a short crack growth direction on the condition that the crack is adjacent to the interface.

9.
Environ Res ; 238(Pt 1): 117158, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37726031

ABSTRACT

Volatile organic compounds (VOCs) undergo substantial photochemical losses during their transport from emission sources to receptor sites, resulting in serious implications for their source apportionment and ozone (O3) formation. Based on the continuous measurements of VOCs in suburban Jinan in August 2022, the effects of photochemical losses on VOC source contributions and O3 formation were evaluated in this study. The observed and initial concentrations of total VOCs (TVOC) were 12.0 ± 5.1 and 16.0 ± 7.4 ppbv, respectively. Throughout the observation period, alkenes had the most prominent photochemical losses (58.2%), followed by aromatic hydrocarbons (23.1%), accounting for 80.6% and 6.9% of the total losses, respectively. During high O3 episodes, the photochemical loss of VOCs was 6.9 times higher than that during the cleaning period. Alkene losses (exceeding 67.3%), specifically losses of isoprene, propylene, ethylene, and n-butene, dominated the total losses of VOCs during the O3 increase period. Eight sources of VOCs were identified by positive matrix factorization (PMF) based on the observed and initial concentration data (OC-PMF and IC-PMF, respectively). Concentrations of all emission sources in the OC-PMF were underestimated by 2.4%-57.1%. Moreover, the contribution of each emission source was over- or underestimated compared with that in case of the IC-PMF. The contributions of biogenic and motor vehicle exhaust emissions were underestimated by 5.3 and 2.8 percentage points, respectively, which was associated with substantial oxidation of the emitted high-reactive species. The contributions of coal/biomass burning and natural gas were overestimated by 2.4 and 3.9 percentage points, respectively, which were related to the emission of low-reactive species (acetylene, ethane, and propane). Based on our results, the photochemical losses of VOCs grossly affect their source apportionment and O3 formation. Thus, photochemical losses of VOCs must be thoroughly accounted to establish a precise scientific foundation for air-pollution control strategies.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Ozone/analysis , Air Pollutants/analysis , Volatile Organic Compounds/analysis , China , Vehicle Emissions/analysis , Environmental Monitoring
10.
Int J Oral Sci ; 15(1): 31, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532700

ABSTRACT

Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.


Subject(s)
Bone Substitutes , HMGB1 Protein , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , HMGB1 Protein/metabolism , Myeloid Differentiation Factor 88/metabolism , Bone Substitutes/metabolism , Dendritic Cells/metabolism
11.
Heliyon ; 9(7): e17769, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483714

ABSTRACT

The present study aimed to predict the envelope surfaces from facial morphology. Condylar envelope surfaces for 34 healthy adults were formed and simplified as sagittal section curves. Cephalometric and maximum mandibular moving distances measurement were performed on the participants. There was no statistically significant difference (p = 0.763) between the left and right maximum lateral movements. There was a statistically significant difference in the mandibular body length between the sexes. The envelope surfaces were divided into type 1 with Hp2 ≥ 1/3 Hp1 and type 2 with Hp2 < 1/3 × Hp1. SNA and SNB for type 2 were significantly greater than those for type 1 (p < 0.001). Therefore, the participants were divided into four groups based on gender and envelope surface morphology. The curves could be fitted using the second-order Fourier function (R-square ≥0.95). Six facial parameters were selected and a matrix was used to map facial morphology to the envelope surface. Individual sagittal curves were predicted using the matrix and facial parameters, and the envelope surface was predicted using the curve and the condyle model. Deviation analysis for the predicted envelope surface using the actual envelope as a reference was carried out (root mean square = 0.9970 mm ± 0.2918 mm). This method may lay a foundation for the geometric design of artificial fossa components of temporomandibular joint replacement systems. It may improve prosthesis design without flexible tissue repair and guide the movement of the artificial joint head.

12.
J Prosthet Dent ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37500342

ABSTRACT

STATEMENT OF PROBLEM: Studies that have used digital methods to quantitatively evaluate physiological tooth displacement under occlusal force are sparse. PURPOSE: The purpose of this clinical study was to measure physiological posterior tooth displacement under occlusal force by intraoral scanning and reverse engineering technology by using implants as the reference. MATERIAL AND METHODS: A total of 14 participants received 15 implant-supported single mandibular first molar crowns. The surface data of maxillary and mandibular posterior teeth (U1 and L1) and the buccal occlusal data in the maximum intercuspal position (MIP) with habitual occlusal force were obtained by using an intraoral scanner (TRIOS 3, v20.1.2). The U1 and L1 data were segmented into single teeth, which were then aligned to the buccal occlusal data by using the "best-fit alignment" command to build the data under occlusal force (U2 and L2). U1 and L1 data were compared with U2 and L2 data to calculate the centroid and functional cusp vertex displacements and the long axis deflections of the second premolars and second molars, taking the first molar as the reference. The medians, and first quartile (Q1), third quartile (Q3) of the above data were reported, and the Shapiro-Wilk and Wilcoxon tests were used to analyze the differences (α=.05). RESULTS: Under occlusal force, the median (Q1, Q3) centroid displacements of posterior teeth ranged from 61 (52, 101) µm to 146 (80, 186) µm; the functional cusp vertex displacements ranged from 82 (62, 117) µm to 146 (98, 189) µm, and the long axis deflections ranged from 0.45 (0.25, 0.87) degrees to 1.03 (0.52, 1.41) degrees. Mandibular second premolars displaced lingually, mesially, and apically; mandibular second molars displaced distally and apically; and maxillary second premolars and second molars displaced lingually and apically. CONCLUSIONS: A digital method taking implant-supported single crowns as the reference was used to demonstrate physiological posterior-tooth displacement under habitual occlusal force.

13.
Photobiomodul Photomed Laser Surg ; 41(7): 364-370, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37459608

ABSTRACT

Objective: Femtosecond laser (fs-laser) is a novel tooth preparation tool but its ablation efficiency is insufficient. The purpose is to establish a new fs-laser tooth ablation method based on a dual-wedges path ablation system, and explore the efficiency of tooth hard tissue and dental restorative materials ablation. Materials and methods: Extracted third molars, pure titanium, cobalt-chromium alloy, gold alloy, and 3Y-zirconia were prepared into samples. These samples were rotary ablated by an fs-laser with dual-wedges. The wavelength was 1030 nm and the pulse duration was 250 fsec. Laser parameters were set as a repetition frequency of 25 kHz, the power percentages as 50% for dental tissues, and 60% for restorative materials. The optical wedge angle was set as 0°, 20°, 40°, 60°, and 80° for restorative materials, 0°, 20°, 30°, 40°, and 60° for enamel, and 0°, 10°, 20°, 30°, and 40°for dentin. Three times of ablation was processed at each parameter to obtain total 90 ablation microcavities of 6 kinds of materials. The diameter, depth, and volume of microcavities were measured by confocal laser microscopy and plotted against optical-wedge-angle in curves of different materials. One-way analysis of variance (ANOVA) was used to test whether the ablation efficiency between different angles was statistically significant. Results: The ablation efficiency of each material at different optical-wedge-angle was statistically significant (p < 0.05) and tends to be correlated. For dental hard tissue, the enamel ablation efficiency was 208.1 times and dentin ablation efficiency were 65.2 times than before when the wedge angle was 40°. For pure titanium, zirconia, cobalt-chromium, and gold alloys, the ablation efficiencies were 3.1, 10.7, 81.5, and 128.8 times than before when the rotation angle was 80°. Conclusions: The ablation efficiency of dental hard tissues and restorative materials was significantly increased with the increase of laser oblique incidence angle. Clinical Trial Registration number: PKUSSIRB-201949124.


Subject(s)
Dentin , Laser Therapy , Laser Therapy/methods , Lasers , Titanium
14.
IEEE J Biomed Health Inform ; 27(10): 4950-4960, 2023 10.
Article in English | MEDLINE | ID: mdl-37471183

ABSTRACT

The ever-growing aging population has led to an increasing need for removable partial dentures (RPDs) since they are typically the least expensive treatment options for partial edentulism. However, the digital design of RPDs remains challenging for dental technicians due to the variety of partially edentulous scenarios and complex combinations of denture components. To accelerate the design of RPDs, we propose a U-shape network incorporated with Transformer blocks to automatically generate RPD clasps, one of the most frequently used RPD components. Unlike existing dental restoration design algorithms, we introduce the voxel-based truncated signed distance field (TSDF) as an intermediate representation, which reduces the sensitivity of the network to resolution and contributes to more smooth reconstruction. Besides, a selective insertion scheme is proposed for solving the memory issue caused by Transformer blocks and enables the algorithm to work well in scenarios with insufficient data. We further design two weighted loss functions to filter out the noisy signals generated from the zero-gradient areas in TSDF. Ablation and comparison studies demonstrate that our algorithm outperforms state-of-the-art reconstruction methods by a large margin and can serve as an intelligent auxiliary in denture design.


Subject(s)
Denture, Partial, Removable , Jaw, Edentulous, Partially , Humans , Aged , Denture Design
15.
J Dent ; 135: 104561, 2023 08.
Article in English | MEDLINE | ID: mdl-37236297

ABSTRACT

OBJECTIVES: This study evaluated the accuracy of digital implant impressions with or without prefabricated landmarks compared with the conventional method in the edentulous mandible. METHODS: An edentulous mandibular stone cast with implant abutment analogs and scan bodies in FDI #46, #43, #33, and #36 served as the master model. The scans captured with intraoral scanners (IOS) were divided into four groups: IOS-NT (no landmarks + Trios 4 scanner), IOS-NA (no landmarks + Aoralscan 3 scanner), IOS-YT (landmarks + Trios 4 scanner), and IOS-YA (landmarks + Aoralscan 3 scanner) (n=10). Landmarks were attached to the scan bodies with resin to improve scanning fluency. Conventional open-trayed technique (CNV) was performed with the 3D-printed splinting frameworks (n=10). The master model and conventional castings were scanned using a laboratory scanner, and the former served as the reference model. Overall distance and angle deviations between scan bodies were measured to determine trueness and precision. The ANOVA or Kruskal-Wallis test compared CNV group to scans without landmarks, while a generalized linear model analyzed scan groups with and without landmarks. RESULTS: Compared to the CNV group, the IOS-NA and IOS-NT groups showed higher overall distance trueness (p=0.009), and precision (distance, p<0.001 and angular, p<0.001). With landmarks, the IOS-YA group had higher overall trueness (distance, p<0.001 and angular, p<0.001) than the IOS-NA group, and the IOS-YT group has higher distance trueness (p=0.041) than the IOS-NT group. Moreover, the precision in distance and angle was significantly improved for IOS-YA and IOS-YT groups, compared with the IOS-NA (p<0.001) and IOS-NT (p<0.001) groups separately. CONCLUSIONS: Digital scans were more accurate than conventional splinting open-trayed impressions. Prefabricated landmarks significantly improved the accuracy of full-arch implant digital scans, regardless of the scanner used. CLINICAL SIGNIFICANCE: Prefabricated landmarks can enhance the accuracy of intraoral scanners for full-arch implant rehabilitation, improving scanning efficiency and clinical outcomes.


Subject(s)
Dental Implants , Dental Impression Technique , Models, Dental , Computer-Aided Design , Imaging, Three-Dimensional , Mandible/diagnostic imaging
16.
BMC Oral Health ; 23(1): 151, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918877

ABSTRACT

BACKGROUND: Precise occlusal design of implant-supported fixed prostheses is difficult to achieve by the conventional wax-up method, often requiring chairside adjustments. The computer-aided design (CAD) method is promising. This study aims to compare the occlusal contacts and clearance of posterior implant-supported single crowns designed by the CAD and conventional methods. METHODS: Sample size calculation indicated fourteen samples per group. Two sets of type-IV plaster casts with a single implant analog inserted in the posterior teeth region were mounted as master casts in a mechanical articulator in maximal intercuspal position (MIP). Seven working cast sets were obtained from each master cast by a closed tray technique, and mounted in MIP. Two implant-supported single crowns were designed with an occlusal clearance to achieve light occlusal contact in each working cast set by CAD and conventional method, separately. For the CAD group, the crown was designed in digital models obtained by scanning the working casts. For the conventional group, wax-up of the crown was prepared on the working casts and scanned to generate a STL file. In the working and master casts, mean and minimum occlusal clearances in the designed occlusal contact area of the both finished prostheses were calculated using the occlusal clearance (OC) and occlusal record (OR) method. The prostheses' occlusion was evaluated in master casts. RESULTS: For the evaluation in the working casts, both design methods had similar mean occlusal clearances by the OC method (195.4 ± 43.8 vs. 179.8 ± 41.8 µm; P = 0.300), while CAD group resulted in a significantly larger minimum occlusal clearance in the designed occlusal contact area (139.5 ± 52.3 vs. 99.8 ± 43.8 µm; P = 0.043). Both design methods had similar mean and minimum occlusal clearances by the OR method (P > 0.05). For the evaluation in the master casts, both design techniques had similar mean and minimum occlusal clearances, number and distribution of occlusal contacts, and lateral interference ratios (P > 0.05). CONCLUSION: Occlusal contact and clearance of posterior implant-supported single crowns designed by the CAD method can be at least as good as those designed by the conventional wax-up method.


Subject(s)
Computer-Aided Design , Crowns , Humans , Dental Occlusion , Research Design , Dental Impression Technique , Dental Prosthesis Design/methods
17.
Comput Biol Med ; 157: 106772, 2023 05.
Article in English | MEDLINE | ID: mdl-36963354

ABSTRACT

BACKGROUND AND OBJECTIVE: The retention of selective laser melting (SLM)-built denture clasps is inferior to that of cast cobalt-chromium (Co-Cr) clasps engaging 0.01-in undercuts, which are commonly used in clinical practice. Either the clasps engage in excessively deep undercuts or inappropriate printing process parameters are applied. With appropriate undercut engagement and levels of process parameters, the retention of SLM-built clasps (including Co-Cr, commercially pure titanium [CP Ti], and Ti alloy [Ti-6Al-4V] ones) may be comparable to that of cast Co-Cr clasps. Therefore, this feasibility study aimed to evaluate their retention to guide dentists during material selection for the powder-bed fusion process during the printing of denture clasps. METHODS: We engaged the clasp arm at an appropriate undercut depth (0.01 or 0.02 in), built clasps at the orientation of their longitudinal axes approximately parallel to the build platform, generated square prism support structures at a critical overhang angle of 30°, applied optimized laser parameters (laser power, scan speed, and hatch space), and adopted annealing treatment for Co-Cr, CP Ti, and Ti-6Al-4V clasps. After postprocessing and accuracy measurement, an insertion/removal test of the clasps for 15,000 cycles was performed to simulate 10 years of clinical use, and the retentive force was recorded every 1500 cycles. Permanent deformation of the retentive arms of the clasps was measured. Cast Co-Cr clasps engaging 0.01-in undercuts were designated the control group. RESULTS: The initial retentive forces of the SLM-built Co-Cr clasps engaging 0.01-in undercuts and CP Ti and Ti-6Al-4V clasps engaging 0.02-in undercuts were comparable to those of the control group. SLM-built Co-Cr clasps engaging 0.01-in undercuts and Ti-6Al-4V clasps engaging 0.02-in undercuts had similar final retentive force and less permanent deformation compared with those of the control group; SLM-built CP Ti clasps engaging 0.02-in undercuts had lower final retentive force and greater permanent deformation. CONCLUSIONS: Considering the long-term retention and permanent deformation of the retentive arms, Co-Cr and Ti-6Al-4V alloys, except CP Ti, are recommended for printing denture clasps. SLM-built Co-Cr clasps should engage 0.01-in undercuts, and Ti-6Al-4V clasps should engage 0.02-in undercuts.


Subject(s)
Chromium Alloys , Denture, Partial, Removable , Chromium Alloys/chemistry , Powders , Feasibility Studies , Dental Clasps , Denture Retention , Materials Testing , Surface Properties , Titanium/chemistry , Printing, Three-Dimensional
18.
J Dent ; 132: 104503, 2023 05.
Article in English | MEDLINE | ID: mdl-37001793

ABSTRACT

OBJECTIVES: To evaluate the effect of a nanosilica-lithium spray coating on the internal and marginal fit of high translucent zirconia crowns using a digital evaluation method. METHODS: A three-dimensional analysis model of a zirconia abutment was digitally scanned using a dental scanner, and 30 monolithic high translucent zirconia crowns were designed and fabricated. They were divided into groups (n = 10) according to the surface treatment method: (1) no treatment: as-sintered zirconia; (2) airborne-particle abrasion with 50 µm Al2O3 particles; and (3) nanosilica-lithium spray coating. Three-dimensional data for the abutment, crown, and crown seated on the abutment were obtained using a dental scanner. The three-dimensional seated fit between the crown and abutment was reconstructed using registration technology, and a three-dimensional (3D) deviation analysis was used to evaluate the effect of different modification methods on the internal and marginal fit of the crowns using root mean square (RMS) values. RESULTS: The 3D deviation analysis of all groups conformed to a normal distribution (P > 0.05), and the variance was homogeneous (P > 0.05). The different surface treatments had no significant effect on the RMS values in the occlusal, axial, and marginal regions of the high translucent zirconia crowns (P > 0.05). CONCLUSIONS: Nanosilica-lithium spray coating for the modification of as-sintered zirconia is clinically feasible and does not affect the internal or marginal fit of high translucent zirconia crowns. CLINICAL SIGNIFICANCE: Nanosilica-lithium spray coating does not affect the adaptation of zirconia crowns and is a clinically feasible surface treatment method for zirconia. It is unnecessary to add the setting values of the internal and marginal fit when fabricating nanosilica-lithium-sprayed zirconia crowns.


Subject(s)
Dental Prosthesis Design , Lithium , Dental Prosthesis Design/methods , Computer-Aided Design , Dental Marginal Adaptation , Crowns , Zirconium , Dental Porcelain
19.
Int J Comput Dent ; 0(0): 0, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36999665

ABSTRACT

AIM: Quantitative dental plaque evaluation is necessary for clinical and scientific work. This study aimed to examine the reliability of this 3D image analysis method by digitally analysing the colour 3D images obtained from an intraoral scanner, and then detecting and quantifying the plaque information and comparing it with the clinical examination results. MATERIALS AND METHODS: A total of 140 teeth from 5 subjects with a standard dentition were enrolled in this study, and plaque examination was performed at two different stages: after 24 hours without oral hygiene (T1) and after habitual brushing (T2). At each time point, the Quigley-Hein plaque index of each tooth surface was recorded separately, followed by colour 3D images obtained using an intraoral scanner, and image analysis and calculation using Geomagic Wrap 2021. RESULTS: It was found that the percentage of plaque staining area calculated from the 3D image analysis correlated well with the plaque index recorded during the clinical examination: the Spearman correlation coefficients were 0.9136 and 0.9061 (p<0.001) for all tooth surfaces at T1 and T2, respectively. The measurements of the three investigators were in good agreement, with intraclass correlation coefficients of 0.989 and 0.992 (P<0.001) for the vestibular and lingual surfaces at T1, and 0.964 and 0.983 (P<0.001) for the vestibular and lingual surfaces at T2. CONCLUSION: In this study, we initially developed a digital 3D evaluation system of dental plaque suitable for research and clinical practice and demonstrated its reliability.

20.
Curr Med Imaging ; 19(12): 1449-1454, 2023.
Article in English | MEDLINE | ID: mdl-36799416

ABSTRACT

PURPOSE: This study proposes a method for improving the accuracy of three-dimensional (3D) models generated through cone-beam computed tomography (CBCT). METHODS: A 3D cuboid model fitted with a »-scale dentition on its top surface was constructed to simulate an alveolar bone with teeth. A physical specimen of the model was printed and the distance between its opposite sides was measured using a vernier caliper. The physical model was light-scanned, and the surface data of the generated 3D model were corrected by calibrating the distance between opposite sides against the vernier caliper measurements. The physical model was also scanned using CBCT to reconstruct a second 3D model. The overall deviation between the two models and the distance deviation in each direction of the cuboid and dentition were quantified and statistically analyzed. RESULTS: The overall deviation between the reconstructed CBCT model and the calibrated structured light-scanned model was 0.098 ± 0.001 mm. Following calibration, the overall deviation was 0.010 ± 0.006 mm. A one-way variance analysis suggested that the overall deviations' differences were not statistically significant (P < 0.05). CONCLUSION: This study lays a solid foundation for accurate dental implantation.


Subject(s)
Imaging, Three-Dimensional , Spiral Cone-Beam Computed Tomography , Humans , Imaging, Three-Dimensional/methods , Calibration , Cone-Beam Computed Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...