Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.196
Filter
1.
Anal Chim Acta ; 1312: 342780, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834272

ABSTRACT

BACKGROUND: The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS: We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol µL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE: The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.


Subject(s)
Aptamers, Nucleotide , Thrombin , Triazines , Triazines/chemistry , Triazines/isolation & purification , Aptamers, Nucleotide/chemistry , Humans , Thrombin/analysis , Thrombin/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Solid Phase Extraction/methods
2.
Sci Data ; 11(1): 460, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710725

ABSTRACT

Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.


Subject(s)
Citrus sinensis , Genome, Plant , Citrus sinensis/genetics , Chromosomes, Plant , DNA Transposable Elements , Synteny
3.
Article in English | MEDLINE | ID: mdl-38806750

ABSTRACT

This study aims to investigate the biomechanical behaviour and the stiffness impact of the breast internal components during running. To achieve this, a novel nonlinear multi-component dynamic finite element method (FEM) has been established, which uses experimental data obtained via 4D scanning technology and a motion capture system. The data are used to construct a geometric model that comprises the rigid body, layers of soft tissues, skin, pectoralis major muscle, fat, ligaments and glandular tissues. The traditional point-to-point method has a relative mean absolute error of less than 7.92% while the latest surface-to-surface method has an average Euclidean distance (d) of 7.05 mm, validating the simulated results. After simulating the motion of the different components of the breasts, the displacement analysis confirms that when the motion reaches the moment of largest displacement, the displacement of the breast components is proportional to their distance from the chest wall. A biomechanical analysis indicates that the stress sustained by the breast components in ascending order is the glandular tissues, pectoralis major muscle, adipose tissues, and ligaments. The ligaments provide the primary support during motion, followed by the pectoralis major muscle. In addition, specific stress points of the breast components are identified. The stiffness impact experiment indicates that compared with ligaments, the change of glandular tissue stiffness had a slightly more obvious effect on the breast surface. The findings serve as a valuable reference for the medical field and sports bra industry to enhance breast protection during motion.

4.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1947-1955, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812207

ABSTRACT

This study aims to decipher the mechanism of sinomenine in inhibiting platelet-derived growth factor/platelet-derived growth factor receptor(PDGF/PDGFR) signaling pathway in rheumatoid arthritis-fibroblast-like synoviocyte(RA-FLS) migration induced by neutrophil extracellular traps(NETs). RA-FLS was isolated from the synovial tissue of 3 RA patients and cultured. NETs were extracted from the peripheral venous blood of 4 RA patients and 4 healthy control(HC). RA-FLS was classified into control group, HC-NETs group, RA-NETs group, RA-NETs+sinomenine group and RA-NETs+sinomenine+CP-673451 group. RNA-sequencing(RNA-seq) was conducted to identify the differentially expressed genes between HC-NETs and RA-NETs groups. Sangerbox was used to perform the Gene Ontology(GO) function and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape was employed to build the protein-protein interaction(PPI) network. AutoDock Vina and PyMOL were used for molecular docking of sinomenine with PDGFß and PDGFRß. The cell proliferation and migration were determined by the cell counting kit-8(CCK-8) and cell scratch assay, respectively. Western blot was employed to determine the protein level of PDGFRß. Real-time quantitative polymerase chain reaction(RT-qPCR) was carried out to determine the mRNA levels of matrix metalloproteinases(MMPs). The results revealed that neutrophils in RA patients were more likely to produce NETs. Compared with HC-NETs group, RA-NETs group showed up-regulated expression of PDGFß and PDGFRß. Compared with control group, RA-NETs group showed increased cell proliferation and migration and up-regulated protein level of PDGFRß and mRNA levels of PDGFß, PDGFRß, MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs group, RA-NETs+sinomenine group presented decreased cell proliferation and migration and down-regulated protein and mRNA level of PDGFRß and mRNA levels of MMP1, MMP3, and MMP9(P<0.05). Compared with RA-NETs+sinomenine group, the proliferation ability of RA-NETs+sinomenine+CP-673451 group decreased(P<0.05). The findings prove that sinomenine reduces the RA-NETs-induced RA-FLS migration by inhibiting PDGF/PDGFR signaling pathway, thus mitigating RA.


Subject(s)
Arthritis, Rheumatoid , Cell Movement , Morphinans , Platelet-Derived Growth Factor , Signal Transduction , Synoviocytes , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Movement/drug effects , Signal Transduction/drug effects , Morphinans/pharmacology , Synoviocytes/drug effects , Synoviocytes/metabolism , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Male , Female , Fibroblasts/drug effects , Fibroblasts/metabolism
5.
Sci Data ; 11(1): 543, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802420

ABSTRACT

Image-based artificial intelligence (AI) systems stand as the major modality for evaluating ophthalmic conditions. However, most of the currently available AI systems are designed for experimental research using single-central datasets. Most of them fell short of application in real-world clinical settings. In this study, we collected a dataset of 1,099 fundus images in both normal and pathologic eyes from 483 premature infants for intelligent retinopathy of prematurity (ROP) system development and validation. Dataset diversity was visualized with a spatial scatter plot. Image classification was conducted by three annotators. To the best of our knowledge, this is one of the largest fundus datasets on ROP, and we believe it is conducive to the real-world application of AI systems.


Subject(s)
Artificial Intelligence , Fundus Oculi , Infant, Premature , Retinopathy of Prematurity , Retinopathy of Prematurity/diagnostic imaging , Humans , Infant, Newborn
6.
Am J Public Health ; : e1-e9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696735

ABSTRACT

Objectives. To identify relationships between US states' COVID-19 in-person activity limitation and economic support policies and drug overdose deaths among working-age adults in 2020. Methods. We used county-level data on 140 435 drug overdoses among adults aged 25 to 64 years during January 2019 to December 2020 from the National Vital Statistics System and data on states' COVID-19 policies from the Oxford COVID-19 Government Response Tracker to assess US trends in overdose deaths by sex in 3138 counties. Results. Policies limiting in-person activities significantly increased, whereas economic support policies significantly decreased, overdose rates. A 1-unit increase in policies restricting activities predicted a 15% average monthly increase in overdose rates for men (incident rate ratio [IRR] = 1.15; 95% confidence interval [CI] = 1.09, 1.20) and a 14% increase for women (IRR = 1.14; 95% CI = 1.09, 1.20). A 1-unit increase in economic support policies predicted a 3% average monthly decrease for men (IRR = 0.97; 95% CI = 0.95, 1.00) and a 4% decrease for women (IRR = 0.96; 95% CI = 0.93, 0.99). All states' policy combinations are predicted to have increased drug-poisoning mortality. Conclusions. The economic supports that states enacted were insufficient to fully mitigate the adverse relationship between activity limitations and drug overdoses. (Am J Public Health. Published online ahead of print May 2, 2024:e1-e9. https://doi.org/10.2105/AJPH.2024.307621).

7.
Am J Nucl Med Mol Imaging ; 14(2): 110-121, 2024.
Article in English | MEDLINE | ID: mdl-38737640

ABSTRACT

Molecular imaging enables visualization and characterization of biological processes that influence tumor behavior and response to therapy. The TMTP1 (NVVRQ) peptide has shown remarkable affinity to highly metastatic tumors and and its potential receptor is aminopeptidase P2. In this study, we have designed and synthesized a 68Ga-labeled cyclic TMTP1 radiotracer (68Ga-DOTA-TMTP1), for PET imaging of cervical cancer. The goal of this study was to investigate the properties of this radiotracer and its tumor diagnostic potential. The radiochemical yield of 68Ga-DOTA-TMTP1 was high and the radiochemical purity was greater than 95%. The octanol-water partition coefficient for 68Ga-DOTA-TMTP1 was -2.76 ± 0.08 and 68Ga-DOTA-TMTP1 has showed excellent stability in in vitro studies. The cellular uptake and efflux of 68Ga-DOTA-TMTP1 in paired highly metastatic and lowly metastatic cervical cancer cell line HeLa and C-33A as well as normal cervical epithelial cell line End1 were measured in a γ counter. 68Ga-DOTA-TMTP1 exhibited higher uptake in HeLa cells than in C-33A cells. The binding to HeLa and C-33A cells could be blocked by excess TMTP1. On microPET images, HeLa tumors were clearly visualized within 60 min and the uptake of the radiotracer in HeLa tumors was higher than that of C-33A tumors. After blocking with TMTP1, HeLa tumors uptake was significantly reduced and the specificity 68Ga-DOTA-TMTP1 was thus validated. Overall, we have successfully synthesized 68Ga-DOTA-TMTP1 with high yield and high specific activity and have demonstrated its potential role for highly metastatic tumor-targeted diagnosis.

8.
Cell Death Differ ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762596

ABSTRACT

Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinß and δ (C/EBPß and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.

9.
Food Res Int ; 183: 114226, 2024 May.
Article in English | MEDLINE | ID: mdl-38760145

ABSTRACT

Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and ß-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.


Subject(s)
Amylose , Flour , Food Handling , Hordeum , Starch , Hordeum/chemistry , Starch/chemistry , Flour/analysis , Viscosity , Amylose/chemistry , Food Handling/methods , Nutritive Value , Dietary Fiber/analysis , Solubility , beta-Glucans/chemistry , Chemical Phenomena , Hot Temperature
10.
Front Microbiol ; 15: 1362283, 2024.
Article in English | MEDLINE | ID: mdl-38800750

ABSTRACT

Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.

11.
Chemistry ; : e202401684, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802324

ABSTRACT

Using carbon disulfide (CS2) and carbonyl sulfide (COS) as sulfur-containing and one-carbon feedstocks to make value-added products is paramount for both pure and applied chemistry and environmental science. One of the practical strategies is to copolymerize these bulk chemicals with epoxides to produce sulfur-containing polymers. This approach contributes to improving the sustainability of polymer manufacturing, provides highly desired functional polymer materials, and has attracted much attention. However, these copolymerizations invariably exhibit the intensely complicated chemistry of O/S exchange reaction, leading to sulfur-containing polymers with diverse architectures. As the understanding of O/S exchange continues to deepen, recent efforts have guided significant advances in the synthesis of CS2- and COS-based polymers. This review examines the O/S exchange chemistry and summarizes the recent progress in this field to promote the further advance of synthesizing sulfur-containing polymers from CS2 and COS.

12.
J Mol Neurosci ; 74(2): 55, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776015

ABSTRACT

The dysregulation of lipid metabolism has been strongly associated with Alzheimer's disease (AD) and has intricate connections with various aspects of disease progression, such as amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. Here, a comprehensive bioinformatic assessment was conducted on lipid metabolism genes in the brains and peripheral blood of AD-derived transcriptome datasets, characterizing the correlation between differentially expressed genes (DEGs) of lipid metabolism and disease pathologies, as well as immune cell preferences. Through the application of weighted gene co-expression network analysis (WGCNA), modules eigengenes related to lipid metabolism were pinpointed, and the examination of their molecular functions within biological processes, molecular pathways, and their associations with pathological phenotypes and molecular networks has been characterized. Analysis of biological networks indicates notable discrepancies in the expression patterns of the DEGs between neuronal and immune cells, as well as variations in cell type enrichments within both brain tissue and peripheral blood. Additionally, drugs targeting the DEGs from central and peripheral and a diagnostic model for hub genes from the blood were retrieved and assessed, some of which were shown to be useful for therapeutic and diagnostic. These results revealed the distinctive pattern of transcriptionally abnormal lipid metabolism in central, peripheral, and immune cell activation, providing valuable insight into lipid metabolism for diagnosing and guiding more effective treatment for AD.


Subject(s)
Alzheimer Disease , Lipid Metabolism , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Lipid Metabolism/genetics , Brain/metabolism , Gene Regulatory Networks
13.
Membranes (Basel) ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786934

ABSTRACT

The phenomenon of melting in metal-organic frameworks (MOFs) has recently garnered attention. Crystalline MOF materials can be transformed into an amorphous glassy state through melt-quenching treatment. The resulting MOF glass structure eliminates grain boundaries and retains short-range order while exhibiting long-range disorder. Based on these properties, it emerges as a promising candidate for high-performance separation membranes. MOF glass membranes exhibit permanent and accessible porosity, allowing for selective adsorption of different gas species. This review summarizes the melting mechanism of MOFs and explores the impact of ligands and metal ions on glassy MOFs. Additionally, it presents an analysis of the diverse classes of MOF glass composites, outlining their structures and properties, which are conducive to gas adsorption and separation. The absence of inter-crystalline defects in the structures, coupled with their distinctive mechanical properties, renders them highly promising for industrial gas separation applications. Furthermore, this review provides a summary of recent research on MOF glass composite membranes for gas adsorption and separation. It also addresses the challenges associated with membrane production and suggests future research directions.

14.
Bioresour Technol ; 402: 130802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718902

ABSTRACT

A cost-effective, and low-energy room-temperature cascade catalytic carbonization strategy is demonstrated for converting lignin into graphite with a high yield of 87 %, a high surface potential of -37 eV and super-hydrophilicity. This super-hydrophilic feature endows the lignin-derived graphite to be dispersed in a variety of polar solvents, which is important for its future applications. Encapsulating of liquid metals with the graphite for electrical circuit patterning on flexible substrates is also advocated. These written patterns show superb conductivity of 4.9 × 106 S/m, offering good performance stability and reliability while being repeatedly stretched, folded, twisted, and bent. This will offer new designs for flexible electronic devices, sensors, and biomedical devices.


Subject(s)
Graphite , Hydrophobic and Hydrophilic Interactions , Lignin , Temperature , Lignin/chemistry , Graphite/chemistry , Catalysis , Carbon/chemistry , Electric Conductivity
15.
Comput Biol Med ; 177: 108636, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38810473

ABSTRACT

BACKGROUND: Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. METHODS: We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compared the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. RESULTS: 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3 % (98/111) in the test set and 83 % (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n = 43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n = 53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n = 9) and control celllines (n = 13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. CONCLUSIONS: These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124502, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815296

ABSTRACT

In this study, four polyureas with triazine moiety (PUAs) were successfully synthesized through the polymerization of triazine-containing diamine and diisocyanate. The intramolecular aggregation of triazine rings and urea groups along the macromolecular backbone gives PUAs a significant polymerization-induced emission (PIE). Among the four PUAs, PUA-LP shows a significant fluorescent emission at 450 nm, compared to non/weak fluorescent 2,4-diamino-6-phenyl-1,3,5-triazine and L-Lysine diisocyanate ethyl ester monomers. Additionally, the external factors such as solution concentration, excitation wavelength, and precipitants also play a crucial role in the fluorescence of PUAs. As expected, PUA-LP can selectively recognize and detect Fe3+/Fe2+ ions even in the presence of 12 other metal ions and 10 anions. The limit of detection of PUA-LP to Fe3+/Fe2+ is as low as 1.02 µM (0.06 mg/L) and 0.86 µM (0.05 mg/L), respectively, and far below 0.3 mg/L of the allowable national standard for drinking water by WHO. Furthermore, the quenching mechanism of Fe3+/Fe2+ to PUA-LP is attributed to static quenching caused by the coordination of Fe3+/Fe2+ ions with a coordination ratio of 2:1. Based on PIE, the fluorescent PUA-LP was made into an observable and portable testing paper for detecting Fe3+/Fe2+ ions. Finally, we measured the recovery rate of the actual tap water samples and compared the performance of PIE-active PUA-LP with the other reported fluorescent probes to Fe3+/Fe2+ ions.

17.
Food Chem ; 453: 139638, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781898

ABSTRACT

As primary polyphenol oxidant products, the occurrence of o-quinone is greatly responsible for quality deterioration in wine, including browning and aroma loss. The high reactivity of o-quinone causes huge difficulty in its determination. Herein, a derivative strategy combined with UHPLC-MS/MS analysis was established with chlorogenic acid quinone (CQAQ) and 4-methylcatechol quinone (4MCQ) as model compounds. Method validation demonstrated its efficiency for two analytes (R2 > 0.99, accuracy 98.71-106.39 %, RSD of precision 0.46-6.11 %, recovery 85.83-99.37 %). This approach was successfully applied to detect CQAQ and 4MCQ, suggesting its applicability in food analysis. CQAQ in coffee was much more than 4MCQ and with the deepening of baking degree, CQAQ decreased and 4MCQ increased. The amounts of CQAQ in various vegetables were markedly different, seemingly consistent with their respective browning degrees in practical production. This study developed an accurate and robust analytical approach for o-quinones, providing technical support for their further investigation in foods.


Subject(s)
Quinones , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Quinones/chemistry , Quinones/analysis , Vegetables/chemistry , Food Analysis , Coffee/chemistry , Chlorogenic Acid/analysis , Chlorogenic Acid/chemistry , Catechols/analysis , Catechols/chemistry
18.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Article in English | MEDLINE | ID: mdl-38715918

ABSTRACT

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Subject(s)
Down-Regulation , Pre-Eclampsia , RNA, Long Noncoding , Snail Family Transcription Factors , Trophoblasts , Adult , Female , Humans , Pregnancy , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Phenotype , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Trophoblasts/metabolism , Trophoblasts/pathology
19.
Front Pharmacol ; 15: 1387585, 2024.
Article in English | MEDLINE | ID: mdl-38725657

ABSTRACT

Background: The European League of Rheumatology(EULAR)guidelines recommend Janus kinase (JAK) inhibitors for patients with moderate to severe rheumatoid arthritis (RA) who are insensitive or under-responsive to conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs). But there was no recommendation for which one was preferred in five currently approved JAK inhibitors. The objective of this network meta-analysis study was to evaluate the efficacy of five JAK inhibitors as monotherapy and combination therapy in patients with moderate-to-severe active rheumatoid arthritis. Methods: The randomized controlled trials (RCTs) of tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib as monotherapy or combined with csDMARD in the treatment of active RA were searched in database of PubMed, Embase, Web of Science and Cochrane Library, up to December 2023. The control group included placebo or csDMARD. Outcome indicators included American College of Rheumatology 20% response (ACR20), ACR50, ACR70 and the percentage of patients achieving 28-joint disease activity score using C-reactive protein (DAS28(CRP))<2.6 at 12 weeks and 24 weeks. The statistical analysis was performed by Stata14 and RevMan5.4. Data processing, network evidence plots, surface under the cumulative ranking curve (SUCRA) ranking, league plots and funnel plots were generated. Risk ratio (RR) and 95% confidence interval (95%CI) as effect sizes to analyze the statistics. Results: This study included thirty-six RCTs with 16,713 patients. All JAK inhibitors were more effective than placebo in ACR20 (RRs ranging between 1.74 and 3.08), ACR50 (RRs ranging between 2.02 and 7.47), ACR70 (RRs ranging between 2.68 and 18.13), DAS28(CRP) < 2.6 (RRs ranging between 2.70 and 7.09) at 12 weeks. Upadacitinib 30 mg and upadacitinib 15 mg showed relatively good efficacy according to their relative SUCRA ranking. All JAK inhibitors were more effective than csDMARD or placebo in ACR20 (RRs ranging between 1.16 and 1.86), ACR50 (RRs ranging between 1.69 and 2.84), ACR70 (RRs ranging between 1.50 and 4.47), DAS28(CRP) < 2.6 (RRs ranging between 2.28 and 7.56) at 24 weeks. Upadacitinib 15 mg + csDMARD and baricitinib 4 mg + csDMARD showed relatively good efficacy according to their relative SUCRA ranking. The safety analysis results such as serious infection, malignancy, major adverse cardiovascular event (MACE), and venous thromboembolic events (VTE) showed no statistical difference. Conclusion: This NMA study indicated that all JAK inhibitors performed better than placebo. Based on the results of this study, upadacitinib 30 mg, upadacitinib 15 mg, upadacitinib 15 mg + csDMARD and baricitinib 4 mg + csDMARD were recommended treatment options with relatively good efficacy and safety. However, attention should be paid to monitoring the occurrence of adverse events in high-risk RA patients with medication. Combination therapy with csDMARD might be more suitable for the maintenance of long-term efficacy. However, in clinical practice, it is still necessary to select the appropriate therapeutic regimen based on the actual clinical situation.

20.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732175

ABSTRACT

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drought Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...