Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5259, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644000

ABSTRACT

Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

2.
Natl Sci Rev ; 9(10): nwac089, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36415315

ABSTRACT

Harnessing the fascinating properties of correlated oxides requires precise control of their carrier density. Compared to other methods, oxygen doping provides an effective and more direct way to tune the electronic properties of correlated oxides. Although several approaches, such as thermal annealing and oxygen migration, have been introduced to change the oxygen content, a continuous and reversible solution that can be integrated with modern electronic technology is much in demand. Here, we report a novel ionic field-effect transistor using solid Gd-doped CeO2 as the gate dielectric, which shows a remarkable carrier-density-tuning ability via electric-field-controlled oxygen concentration at room temperature. In Bi2Sr2CaCu2O8+δ (Bi-2212) thin flakes, we achieve a reversible superconductor-insulator transition by driving oxygen ions in and out of the samples with electric fields, and map out the phase diagram all the way from the insulating regime to the over-doped superconducting regime by continuously changing the oxygen doping level. Scaling analysis indicates that the reversible superconductor-insulator transition for the Bi-2212 thin flakes follows the theoretical description of a two-dimensional quantum phase transition. Our work provides a route for realizing electric-field control of phase transition in correlated oxides. Moreover, the configuration of this type of transistor makes heterostructure/interface engineering possible, thus having the potential to serve as the next-generation all-solid-state field-effect transistor.

3.
Adv Mater ; 34(29): e2201597, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35583233

ABSTRACT

The large negative magnetoresistance (MR) effect, which usually emerges in various magnetic systems, is a technologically important property for spintronics. Recently, the so-called "chiral anomaly" in topological semimetals offers an alternative to generate a considerable negative MR effect without utilizing magnetism. However, it requires that the applied magnetic field must be strictly along the electric current direction, which sets a strong limit for practical applications. Here, a giant negative MR effect is discovered with a value of up to -40% in 9 T at 2 K in the nonmagnetic Dirac material YCuAs2 , which is not restricted to the specific configuration for applied magnetic fields. Based on magnetic susceptibility and NMR measurements, the giant negative MR effect is tightly connected with the unexpected spin-dependent scattering from vacancy-induced local moments, which is also beyond the classical Kondo effect. The present work not only offers an alternative route for spintronics based on nonmagnetic topological materials, but also helps to further understand the negative MR effect in topological materials.

4.
Adv Mater ; 33(31): e2008586, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173269

ABSTRACT

The discovery of magnetism in 2D materials offers new opportunities for exploring novel quantum states and developing spintronic devices. In this work, using field-effect transistors with solid ion conductors as the gate dielectric (SIC-FETs), we have observed a significant enhancement of ferromagnetism associated with magnetic easy-axis switching in few-layered Cr2 Ge2 Te6 . The easy axis of the magnetization, inferred from the anisotropic magnetoresistance, can be uniformly tuned from the out-of-plane direction to an in-plane direction by electric field in the few-layered Cr2 Ge2 Te6 . Additionally, the Curie temperature, obtained from both the Hall resistance and magnetoresistance measurements, increases from 65 to 180 K in the few-layered sample by electric gating. Moreover, the surface of the sample is fully exposed in the SIC-FET device configuration, making further heterostructure-engineering possible. This work offers an excellent platform for realizing electrically controlled quantum phenomena in a single device.

5.
Inorg Chem ; 60(6): 3902-3908, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33481576

ABSTRACT

Exploration of new superconductors has always been one of the research directions in condensed matter physics. We report here a new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2, which is synthesized by the hydrothermal ion-exchange technique. The structure is suggested by a combination of X-ray powder diffraction and the electron diffraction (ED). [(Fe,Al)(OH)2][FeSe]1.2 is composed of the alternating stacking of a tetragonal FeSe layer and a hexagonal (Fe,Al)(OH)2 layer. In [(Fe,Al)(OH)2][FeSe]1.2, there exists a mismatch between the FeSe sublayer and the (Fe,Al)(OH)2 sublayer, and the lattice of the layered heterostructure is quasi-commensurate. The as-synthesized [(Fe,Al)(OH)2][FeSe]1.2 is nonsuperconducting due to the Fe vacancies in the FeSe layer. The superconductivity with a Tc of 40 K can be achieved after a lithiation process, which is due to the elimination of the Fe vacancies in the FeSe layer. The Tc is nearly the same as that of (Li,Fe)OHFeSe although the structure of [(Fe,Al)(OH)2][FeSe]1.2 is quite different from that of (Li,Fe)OHFeSe. The new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2 contains an iron selenium tetragonal lattice interleaved with a hexagonal metal hydroxide lattice. These results indicate that the superconductivity is very robust for FeSe-based superconductors. It opens a path for exploring superconductivity in iron-base superconductors.

6.
Sci Bull (Beijing) ; 64(10): 653-658, 2019 May 30.
Article in English | MEDLINE | ID: mdl-36659647

ABSTRACT

Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric (SIC-FET), we successfully achieve an electric-field-controlled phase transition between superconductor and ferromagnetic insulator in (Li,Fe)OHFeSe. A dome-shaped superconducting phase with optimal Tc of 43 K is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior. The origin of the ferromagnetism is ascribed to the order of the interstitial Fe ions expelled from the (Li,Fe)OH layers by gating-controlled Li injection. These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of the SIC-FET in regulating physical properties of layered unconventional superconductors.

7.
Sci Bull (Beijing) ; 63(23): 1539-1544, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-36751073

ABSTRACT

Different instabilities have been confirmed to exist in the three-dimensional (3D) electron gas when it is confined to the lowest Landau level in the extreme quantum limit. The recently discovered 3D topological semimetals offer a good platform to explore these phenomena due to the small sizes of their Fermi pockets, which means the quantum limit can be achieved at relatively low magnetic fields. In this work, we report the high-magnetic-field transport properties of the Dirac semimetal state in pressurized black phosphorus. Under applied hydrostatic pressure, the band structure of black phosphorus goes through an insulator-semimetal transition. In the high pressure topological semimetal phase, anomalous behaviors are observed on both magnetoresistance and Hall resistivity beyond the relatively low quantum limit field, which is demonstrated to indicate the emergence of an exotic electronic state hosting a density wave ordering. Our findings bring the first insight into the electronic interactions in black phosphorus under intense field.

SELECTION OF CITATIONS
SEARCH DETAIL
...