Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1414844, 2024.
Article in English | MEDLINE | ID: mdl-38988631

ABSTRACT

Background: Border row effects impact the ecosystem functions of intercropping systems, with high direct interactions between neighboring row crops in light, water, and nutrients. However, previous studies have mostly focused on aboveground, whereas the effects of intercropping on the spatial distribution of the root system are poorly understood. Field experiments and planting box experiments were combined to explore the yield, dry matter accumulation, and spatial distribution of root morphological indexes, such as root length density (RLD), root surface area density (RSAD), specific root length (SRL), and root diameter (RD), of maize and peanut and interspecific interactions at different soil depths in an intercropping system. Results: In the field experiments, the yield of intercropped maize significantly increased by 33.45%; however, the yield of intercropped peanut significantly decreased by 13.40%. The land equivalent ratio (LER) of the maize-peanut intercropping system was greater than 1, and the advantage of intercropping was significant. Maize was highly competitive (A = 0.94, CR=1.54), and the yield advantage is mainly attributed to maize. Intercropped maize had higher RLD, RSAD, and SRL than sole maize, and intercropped peanut had lower RLD, RSAD, and SRL than sole peanut. In the interspecific interaction zone, the increase in RLD, RSAD, SRL, and RD of intercropped maize was greater than that of intercropped peanut, and maize showed greater root morphological plasticity than peanut. A random forest model determined that RSAD significantly impacted yield at 15-60 cm, while SRL had a significant impact at 30-60 cm. Structural equation modeling revealed that root morphology indicators had a greater effect on yield at 30-45 cm, with interactions between indicators being more pronounced at this depth. Conclusion: These results show that border-row effects mediate the plasticity of root morphology, which could enhance resource use and increase productivity. Therefore, selecting optimal intercropping species and developing sustainable intercropping production systems is of great significance.

2.
J Hazard Mater ; 460: 132424, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37651933

ABSTRACT

Phenol, as an important chemical raw material, often exists in wastewater from chemical plants and pollutes soil and groundwater. Aerobic biodegradation is a promising method for remediation of phenolic wastewater. In this study, degradation characteristics and mechanisms of phenol in Cupriavidus nantongensis X1 were explored. Strain X1 could completely degrade 1.5 mM phenol within 32 h and use it as the sole carbon source for growth. The optimal degradation temperature and pH for phenol by strain X1 were 30 °C and 7.0. The detection of 3-oxoadipate and 4-hydroxy-2-oxopentanoate indicated that dual metabolic pathways coexist in strain X1 for phenol degradation, ortho- and meta-pathway. Genome and transcriptome sequencing revealed the whole gene clusters for phenol biomineralization, in which C12O and C23O were key enzymes in two metabolic pathways. The ribosome proteins were also involved in the regulation of phenol degradation. Meanwhile, the degradation activities of enzyme C23O was 188-fold higher than that of C12O in vitro, which indicated that the meta-pathway was more efficient than ortho-pathway for catechol degradation in strain X1. This study provides an efficient strain resource for phenol degradation, and the discovery of dual metabolic pathways provides new insight into the aerobic biological metabolism and bioremediation of phenol.


Subject(s)
Phenol , Wastewater , Biodegradation, Environmental , Phenols , Metabolic Networks and Pathways
3.
Chemosphere ; 337: 139280, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37385482

ABSTRACT

The use of biodegradable plastic film mulching as a replacement for polyethylene plastic film has gained recognition due to its reduced environmental pollution. However, its impact on soil environment is not yet fully understood. Here, we compared the effects of different plastic film mulching on the accumulation of microbial necromass carbon (C) and its contribution to soil total C in 2020 and 2021. Results showed that biodegradable plastic film mulching decreased the accumulation of fungal necromass C compared to no plastic film mulching and polyethylene film mulching. However, the bacterial necromass C and soil total C were not affected by the plastic film mulching. Biodegradable plastic film mulching decreased the soil dissolved organic carbon content after maize harvest. Random forest models suggested that soil dissolved organic C, soil pH and the ratio of soil dissolved organic C to microbial biomass C were important factors in regulating the accumulation of fungal necromass C. The abundance of the fungal genus Mortierella was also found to have a significant positive contribution to the accumulation of fungal necromass C. These findings suggest that biodegradable plastic film mulching may decrease the accumulation of fungal necromass C by changing substrate availability, soil pH, and fungal community composition, with potential implications for soil C storage.


Subject(s)
Biodegradable Plastics , Soil , Soil/chemistry , Agriculture/methods , Water/analysis , Polyethylenes , Plastics , China
4.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559707

ABSTRACT

Polycaprolactone (PCL) is one of the promising linear aliphatic polyesters which can be used as mulching film. Although it has suitable glass transition temperature and good biodegradability, further practical applications are restricted by the limited temperature-increasing and moisturizing properties. The rational design of the PCL structure is a good strategy to enhance the related properties. In this study, thermally-induced phase separation (TIPS) was introduced to fabricate a PCL nanoporous thin film. The introduction of a nanoporous structure on the PCL surface (np-PCL) exhibited enhanced temperature-increasing and moisturizing properties when used as mulch film. In detail, the average soil temperature of np-PCL was increased to 17.81 °C, when compared with common PCL of 17.42 °C and PBAT of 17.50 °C, and approaches to PE of 18.02 °C. In terms of water vapor transmission rate, the value for np-PCL is 637 gm-2day-1, which was much less than the common PCL of 786 and PBAT of 890 gm-2day-1. As a result, the weed biomass under the np-PCL was suppressed to be 0.35 kg m-2, almost half of the common PCL and PBAT. In addition, the np-PCL shows good thermal stability with an onset decomposition temperature of 295 °C. The degradation mechanism and rate of the np-PCL in different pH environments were also studied to explore the influence of nanoporous structure. This work highlights the importance of the nanoporous structure in PCL to enhance the temperature-increasing and moisturizing properties of PCL-based biodegradable mulching film.

5.
Article in English | MEDLINE | ID: mdl-35491826

ABSTRACT

Most studies on microplastics (MPs) focused on gut, liver, and brain, and MPs toxicity was size-dependent, but less has been reported on gill. Here, zebrafish were exposed to three sizes of MPs (45-53 µm, 90-106 µm, and 250-300 µm). Next, comparative transcriptome analysis and determination of physiological indices were performed in zebrafish gills to elucidate the size-associated toxicity of MPs to fish gills. Compared with the control, 60, 344, and 802 differentially expressed genes (DEGs) were identified after exposure to 45-53 µm, 90-106 µm, and 250-300 µm MPs for 5 days, respectively. More DEGs in treatment with bigger MPs suggested that bigger MPs might induce more changes in zebrafish gills than smaller ones. These DEGs were significantly enriched in the FoxO signaling, cellular senescence, circadian rhythm and p53 signaling pathways. Besides, 90-106 µm and 250-300 µm MPs treatments inhibited the cell cycle and prevented the apoptosis. The GSH content significantly increased after MPs exposure, suggesting the induction of oxidative stress. AChE and Na+/K+-ATPase activities were significantly lowered in all MPs treatments than in the control, suggesting the inhibition of neurotransmission and ion regulation. These changes might negatively influence the normal functioning of gills, such as osmoregulation, ion regulation, and respiration.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Gills/metabolism , Microplastics/toxicity , Plastics , Transcriptome , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
6.
Implement Res Pract ; 3: 26334895221109963, 2022.
Article in English | MEDLINE | ID: mdl-37091080

ABSTRACT

Background: There is a substantial mental health treatment gap globally. Increasingly, mental health treatments with evidence of effectiveness in western countries have been adapted and tested in culturally and contextually distinct countries. Findings from these studies have been promising, but to better understand treatment outcome results and consider broader scale up, treatment acceptability needs to be assessed and better understood. This mixed methods study aimed to examine child and guardian acceptability of trauma-focused cognitive behavioral therapy (TF-CBT) in two regions in Tanzania and Kenya and to better understand how TF-CBT was perceived as helpful for children and guardians. Methods: Participants were 315 children (7-13), who experienced the death of one or both parents and 315 guardians, both of whom participated in TF-CBT as part of a randomized controlled trial conducted in Tanzania and Kenya. The study used mixed methods, with quantitative evaluation from guardian perspective (N=315) using the Treatment Acceptability Questionnaire (TAQ) and the Client Satisfaction Questionnaire-8 (CSQ-8). Acceptability was assessed qualitatively from both guardian and child perspectives. Qualitative evaluation involved analysis using stratified selection to identify 160 child and 160 guardian interviews, to allow exploration of potential differences in acceptability by country, setting (urban/rural), and youth age (younger/older). Results: Guardians reported high acceptability on the TAQ and, using an interpretation guide from U.S.-based work, medium acceptability on the CSQ-8. Guardians and children noted high acceptability in the qualitative analysis, noting benefits that correspond to TF-CBT's therapeutic goals. Analyses exploring differences in acceptability yielded few differences by setting or child age but suggested some potential differences by country. Conclusion: Quantitative and qualitative data converged to suggest high acceptability of TF-CBT from guardian and child perspectives in Tanzania and Kenya. Findings add to accumulating evidence of high TF-CBT acceptability from Zambia and other countries (United States, Norway, Australia).Plain Language Summary: Evidence-based treatments have been shown to be effective in countries and regions that are contextually and culturally distinct from where they were developed. But, perspectives of consumers on these treatments have not been assessed regularly or thoroughly. We used open-ended questions and rating scales to assess guardian and youth perspectives on a group-based, cognitive behavioral treatment for children impacted by parental death, in regions within Tanzania and Kenya. Our findings indicate that both guardians and youth found the treatment to be very acceptable. Nearly all guardians talked about specific benefits for the child, followed by benefits for the family and themselves. Eighty percent of youth mentioned benefits for themselves and all youth said they would recommend the program to others. Benefits mentioned by guardians and youth corresponded to treatment goals (improved mood/feelings or behavior, less distress when thinking about the parent/s' death). Both guardians and children named specific aspects of the treatment that they liked and found useful. Dislikes and challenges of the treatment were less frequently mentioned, but point to areas where acceptability could be further improved. Recommendations from participants also offer areas where acceptability could be improved, namely guardians' recommendation that the treatment also address non-mental health needs and offer some follow-up or opportunity to participate in the program again. Our study provides an example of how to assess acceptability and identify places to further enhance acceptability.

7.
Ecotoxicology ; 30(10): 1997-2010, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34529203

ABSTRACT

Microplastics (MPs) are common environmental contaminants that present a growing health concern due to their increasing presence in aquatic and human systems. However, the mechanisms behind MP effects on organisms are unclear. In this study, zebrafish (Danio rerio) were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of polyethylene MPs (45-53 µm). In the zebrafish intestine, 6, 5, and 186 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In the gills, 318, 92, and 484 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In both the intestine and the gills, Gene Ontology (GO) annotation showed that the main enriched terms were biological regulation, cellular process, metabolic process, cellular anatomical entity, and binding. KEGG enrichment analysis on DEGs revealed that the dominant pathways were carbohydrate metabolism and lipid metabolism, which were strongly influenced by MPs in the intestine. The dominant pathways in the gills were immune and lipid metabolism. The respiratory rate of gills, the activity of SOD and GSH in the intestine significantly increased after exposure to MPs compared with the control (p < 0.05), while the activity of SOD did not change in the gills. GSH activity was only significantly increased after MP exposure for 5 days. Also, the MDA content was not changed in the intestine but was significantly decreased in the gills after MP exposure. The activity of AChE significantly decreased only after MPs exposure for 5 days. Overall, these results indicated that MPs pollution significantly induced oxidative stress and neurotoxicity, increased respiratory rate, disturbed energy metabolism and stimulated immune function in fish, displaying an environmental risk of MPs to aquatic ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Gills , Intestines/chemistry , Plastics/toxicity , Polyethylene/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
8.
Ultrason Sonochem ; 75: 105607, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34062351

ABSTRACT

Ara h 1 is the most abundant sensitizing protein in peanuts; it has high thermal stability and is difficult to degrade. The peanut sprout is a high-quality, natural food that has various beneficial effects and lower allergenicity than peanut seeds. In this study, ultrasonication (US) of peanut sprouts was used to alter their Ara h 1 content. We determined that the optimal parameters for the US process were 35 °C temperature, 30 min duration, 240 W power, and 100 kHz frequency. After 5 days of germination, the protease activity of the control (blank) group increased to 262.39 ± 0.10 U, whereas that of the US group increased to 290.1 ± 0.25 U. We also investigated the effects of US on Ara h 1 protein composition, structure, and related gene expression during germination. ELISA results showed that after 5 days of germination, Ara h 1 content in the blank group decreased from 20.63 ± 0.31 ppm to 3.35 ± 0.42 ppm, whereas in the US group, they decreased to below the detection limit. SDS-PAGE bands between 50 and 70 kDa from peanut sprout extracts gradually became lighter in both groups. The band almost disappeared at day 5 of germination in the US group, indicating that US reduced the Ara h 1 content of peanut sprouts, consistent with the ELISA results. The expression of the Ara h 1 gene in peanut seeds was 173.92 ± 26.37. In the BK control group, it decreased to 0.49 ± 0.17 on the fourth day and increased slightly to 0.75 ± 0.09 on the fifth day. In the US group, it decreased to 1.37 ± 0.28 on the first day, dropped sharply to 0.00 on the third day, and increased slightly to 0.04 ± 0.01 on the fourth and fifth days. Protein structure results showed that the α-helix structure of Ara h 1 decreased after US, whereas the content of ß-fold structures increased. The surface hydrophobicity decreased, and the secondary and tertiary structures of Ara h 1 were loose.


Subject(s)
Antigens, Plant/chemistry , Arachis/chemistry , Membrane Proteins/chemistry , Plant Proteins/chemistry , Sonication , Antigens, Plant/immunology , Arachis/immunology , Food Handling , Hot Temperature , Membrane Proteins/immunology , Plant Proteins/immunology , Seeds/chemistry
9.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1807-1815, 2021 May.
Article in Chinese | MEDLINE | ID: mdl-34042377

ABSTRACT

To get an optimal mode of irrigation and nitrogen supply for table grape production in North China, a pot experiment was conducted to investigate the effects of different irrigation modes and N application rates on dry matter accumulation and distribution, yield, water use efficiency, and nitrogen use efficiency of table grape. The irrigation modes included conventional drip irrigation (CDI, with sufficient irrigation), alternate partial root-zone drip irrigation (ADI, with 50% amount of the irrigation water of CDI) and fixed partial root-zone drip irrigation (FDI, with 50% amount of the irrigation water of CDI). The nitrogen application rates were set at 0.4 (N1), 0.8 (N2) and 1.2 (N3) g·kg-1 dry soil. The results showed that compared with CDI, ADI and FDI reduced new shoot pruning amount by 34.8% and 11.2%, respectively. New shoot pruning amount increased with increasing N application rates, being highest under CDIN3. Dry matter accumulation of ADI was the highest, being 5.1% and 12.8% higher than CDI and FDI. Dry matter accumulation was higher under N2 and N3 than N1. Compared with CDI and FDI, leaf to fruit ratio reduced but harvest index significantly increased in ADI, while those variables showed no significant difference among diffe-rent N application rates. The ratio of pruning amount to the biomass accumulated in the current year in ADIN2 was the lowest among the treatments. Compared with CDI and FDI, ADI increased grape fruit yield by 6.0% and 10.4%, respectively. Fruit yield was enhanced with increasing nitrogen application rates under the same irrigation condition, with the highest yield under the ADIN2 and ADIN3. Water use efficiency (WUE) increased significantly in ADI compared with CDI and FDI, with the highest value being observed in ADI coupled with N2 or N3. Nitrogen use efficiency (NUE) showed a trend of ADI>CDI>FDI. In addition, NUE decreased with increasing nitrogen supply level across the irrigation modes. In conclusion, ADIN2 could reduce the redundant growth of grape tree, promote the transfer of dry matter to fruit, which increased yield and use efficiency of both water and nitrogen, which is a suitable coupling water and nitrogen supply mode for grape production in northern China.


Subject(s)
Nitrogen , Vitis , Agricultural Irrigation , Biomass , China , Fertilizers , Soil , Water/analysis
10.
Article in English | MEDLINE | ID: mdl-33799380

ABSTRACT

Understanding the deposition and tracking the source of soil organic carbon (C) and nitrogen (N) within agricultural watersheds are critical for assessing soil C and N budgets and developing watershed-specific best management practices. Few studies have been conducted and reported on highly eroded hilly-gully watersheds. In this field study, a constructed dam-controlled hilly-gully watershed in northeastern China was selected to identify the sources of soil C and N losses. Soils at various land uses and landscape positions, and sediments near the constructed dam, were collected and analyzed for selected physiochemical properties, total organic carbon (TOC), total nitrogen (TN), and stable isotopes (13C and 15N). Soil C and N loss and deposition in the watershed were assessed and the relative contributions of each source quantified by a stable isotope mixing model (SIAR). Results indicated that soil C loss was primarily from cropland, accounting for 58.75%, followed by gully (25.49%), forest (9.2%), and grassland (6.49%). Soil N loss was similar to soil C, with cropland contribution of 80.58%, gully of 10.30%, grassland of 7.54%, and forest of 1.59%. The C and N deposition gradually decreased along the direction of the runoff pathway near the constructed dam, and the deposited C and N from cropland and gullies showed an order: middle-dam > bottom-dam > upper-dam and upper-dam > bottom-dam > middle-dam, respectively. A high correlation between soil TOC or TN and the sediment properties suggested that the deposition conditions could be the major factors affecting the C and N pools in the sedimentary zones. This study would provide a scientific insight to develop effective management practices for soil erosion and nutrient loss control in highly eroded agriculture watersheds.


Subject(s)
Carbon , Soil , Agriculture , Carbon/analysis , China , Nitrogen/analysis
11.
Sci Rep ; 11(1): 8965, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903721

ABSTRACT

Lead (Pb) contamination in environment has been identified as a threat to human health and ecosystems. In an effort to reduce the health and ecological risks associated with Pb mining wastes, a field study was conducted to stabilize Pb using phosphate (P)-enriched biosolid amendments in the contaminated mining wastes (average of 1004 mg Pb kg-1) located within the Jasper County Superfund Site, southwest Missouri. Experiments consisted of six biosolid amendment treatments, including Mizzou Doo compost (MD); Spent mushroom compost (SMC); Turkey litter compost (TLC); Composted chicken litter (CCL); Composted sewage sludge (CSS); and Triple superphosphate (TSP). Kentucky tall fescue seeds were planted following the treatments, and soil and plant samples were collected and analyzed 8-10 years post treatment. Results indicated that, in all cases, the biosolid treatments resulted in significant reductions in bioaccessible Pb (96.5 to 97.5%), leachable Pb (95.0 to 97.1%) and plant tissue Pb (45.5 to 90.1%) in the treated wastes, as compared with the control. The treatments had no significantly toxicological effect to soil microbial community. Analysis of the Pb fractionation revealed that the Pb risk reduction was accomplished by transforming labile Pb fractions to relatively stable species through the chemical stabilization reactions as induced by the treatments. The solid-phase microprobe analysis confirmed the formation of pyromorphite or pyromorphite-like minerals after the treatment. Among the six biosolid amendments examined, SMC and MD treatments were shown most effective in the context of Pb stabilization and risk reduction. This field study demonstrated that the treatment effectiveness of Pb stabilization and risk reduction in mining wastes by P-enriched biosolid amendments was long-term and environmental-sound, which could be potentially applied as a cost-effective remedial technology to restore contaminated mining site and safeguard human health and ecosystems from Pb contamination.

12.
Chemosphere ; 270: 128613, 2021 May.
Article in English | MEDLINE | ID: mdl-33131733

ABSTRACT

Most previous researches focused on the toxicity of polystyrene microplastics (MPs) to marine organisms, but less on polyethylene MPs and freshwater zooplanktons. The present study aims to elucidate the toxicity of polyethylene (PE) MPs (diameter = 10-22 µm) to the typical freshwater rotifer Brachionus calyciflorus. Firstly, fluorescent microscope observation showed that rotifers could ingest PE MPs and accumulate them in their digestive tracts. Life-table experiments revealed that exposure to 0.5 × 103, 2.5 × 103, and 1.25 × 104 particles/mL PE MPs significantly reduced net reproductive rate and intrinsic rate of pollution increase of rotifers under algal densities (Scenedesmus obliquus) of 0.1 × 106, and 0.5 × 106 cells/mL, but no significant effects were observed under 2.5 × 106 cells/mL algal density. These results showed that PE MPs suppressed the reproduction of rotifer and this negative effect could be alleviated by increasing food supply. The swimming linear speed of rotifers significantly decreased with increasing MP concentrations. The activities of superoxide dismutase and Na+-K+-ATPase significantly decreased in treatments with high concentration of PE MPs under 0.1 × 106 cells/mL algal density, but did not change significantly in MP treatments under 0.5 × 106 and 2.5 × 106 cells/mL, compared to the control. Glutathione peroxidase activity significantly increased in treatments with 1.25 × 104 particles/mL and 2.5 × 103 particles/mL under 0.1 × 106 and 0.5 × 106 cells/mL algal density, respectively, but did not change significantly in all MP treatments under 2.5 × 106 cells/mL. Exposure to PE MPs might lower the gathering capacity of algae, induce oxidative stress, trigger cell membrane damages and disturb energy metabolism in rotifers, which can explain the PE MPs toxicity to rotifer reproduction.


Subject(s)
Rotifera , Water Pollutants, Chemical , Animals , Fresh Water , Microplastics , Plastics , Polyethylene/toxicity , Water Pollutants, Chemical/toxicity
14.
Molecules ; 22(1)2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28117702

ABSTRACT

There is a continuing need to develop effective materials for the environmental remediation of copper-contaminated sites. Nano-MnO2-biochar composites (NMBCs) were successfully synthesized through the reduction of potassium permanganate by ethanol in a biochar suspension. The physicochemical properties and morphology of NMBCs were examined, and the Cu(II) adsorption properties of this material were determined using various adsorption isotherms and kinetic models. The adsorption capacity of NMBCs for Cu(II), which was enhanced by increasing the pH from 3 to 6, was much larger than that of biochar or nano-MnO2. The maximum adsorption capacity of NMBCs for Cu(II) was 142.02 mg/g, which was considerably greater than the maximum adsorption capacities of biochar (26.88 mg/g) and nano-MnO2 (93.91 mg/g). The sorption process for Cu(II) on NMBCs fitted very well to a pseudo-second-order model (R² > 0.99). Moreover, this process was endothermic, spontaneous, and hardly influenced by ionic strength. The mechanism of Cu(II) adsorption on NMBCs mainly involves the formation of complexes between Cu(II) and O-containing groups (e.g., COO-Cu and Mn-O-Cu). Thus, NMBCs may serve as effective adsorbents for various environmental applications, such as wastewater treatment or the remediation of copper-contaminated soils.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Environmental Restoration and Remediation/methods , Manganese Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Coordination Complexes/chemistry , Hydrogen-Ion Concentration , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...