Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(50): 18302-18310, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38055953

ABSTRACT

Bacterial infections and antibiotic abuse are a global threat to human health. In recent years, there has been a boom in research on antimicrobial agents with low toxicity and efficient nanomaterials. Boric acid-functionalized carbon dots (B-CDs) with negative surface charge were synthesized by the hydrothermal method. Covalent bonds were formed between the boric acid groups and the cis-diol groups of the polysaccharide in the bacterial cell wall, and numerous B-CDs were trapped on the bacterial surface. In the experiments of antibacterial activity, B-CDs presented strong bactericidal activity against Escherichia coli (E. coli) with a minimum bactericidal concentration of 12.5 µg/mL. The antibacterial mechanism suggested that B-CDs entered the cell interior by diffusion and posed significant damage to the double helix structure of E. coli DNA. Furthermore, B-CDs exhibited low toxicity. The results demonstrated that the novel antimicrobial B-CDs not only fought against E. coli infection and antibiotic misuse but also provided new ideas for safe and effective antimicrobial agents of carbon nanomaterials.


Subject(s)
Anti-Infective Agents , Quantum Dots , Humans , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Escherichia coli/metabolism , Carbon/pharmacology , Carbon/chemistry , Quantum Dots/toxicity , Quantum Dots/chemistry
3.
Cell Death Differ ; 27(6): 1998-2013, 2020 06.
Article in English | MEDLINE | ID: mdl-31863069

ABSTRACT

Human telomerase RNA component hTERC comprises multiple motifs that contribute to hTERC biogenesis, holoenzyme activity, and enzyme recruitment to telomeres. hTERC contains several guanine tracts (G-tracts) at its 5'-end, but its associated proteins and potential roles in telomerase function are still poorly understood. The heterogeneous nuclear ribonucleoproteins F, H1, and H2 (hnRNP F/H) are splicing factors that preferentially bind to poly(G)-rich sequences RNA. Here, we demonstrate that hnRNP F/H associate with both hTERC and telomerase holoenzyme to regulate telomerase activity. We reveal hnRNP F/H bind to the 5'-end region of hTERC in vitro and in vivo, and identify the first three G-tracts of hTERC and qRRM1 domain of hnRNP F/H are required for their interaction. Furthermore, hnRNP F/H also directly interact with telomerase holoenzyme. Functionally, we show that hnRNP F/H plays important roles in modulating telomerase activity and telomere length. Moreover, hnRNP F/H deletion greatly impair cancer and stem cell proliferation, and induce stem cell senescence, while hnRNP F/H overexpression delay stem cell senescence. Collectively, our findings unveil a novel role of hnRNP F/H as the binding partners of hTERC and telomerase holoenzyme to regulate telomerase function.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , RNA/metabolism , Telomerase/metabolism , Binding Sites , Cell Proliferation , HEK293 Cells , HeLa Cells , Humans , Protein Binding
4.
Aging (Albany NY) ; 11(9): 2583-2609, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31048563

ABSTRACT

The activation of transcription factor NF-κB is currently identified as one of the driving forces to the aging process. Genetic impairment of NF-κB signaling pathway or pharmacological inhibition of NF-κB activity has been shown to extend healthspan and lifespan in animal models, and delay or reduce many age-related symptoms. However, the aging intervention strategies based on NF-κB inhibition by the suitable small molecular compound is currently still lacking. The water-soluble dimethylaminomicheliolide (DMAMCL), can inhibit NF-κB activity and is currently undergoing clinical trials. In this study, we showed that 15 months of DMAMCL administration started in 1-year old male mice was well-tolerated and safe, and improved or had little effect on some age-associated symptoms, such as neurobehavioral phenotypes, physical performance, cardiac function, hematological parameters, immune aging phenotypes, clinical chemistry parameters, and glucose homeostasis. At the molecular level, DMAMCL administration mitigated serum levels of several age-associated inflammatory cytokines, including IL-6, IL-1α, IL-1ß, TNF-α, IFN-γ, and CXCL2, and inhibited NF-κB activity in several aged tissues. Collectively, our results indicate that current strategy of DMAMCL administration may has little effect on aging process in mice, and provide basic clues to further exploit the possibility of DMAMCL-based aging intervention to promote healthy aging.


Subject(s)
Aging/drug effects , Sesquiterpenes, Guaiane/pharmacology , Animals , Cytokines/genetics , Cytokines/metabolism , Drug Administration Schedule , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Musculoskeletal Physiological Phenomena , Sesquiterpenes, Guaiane/administration & dosage
5.
Aging (Albany NY) ; 11(2): 549-572, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30670674

ABSTRACT

Senescent cells display the senescence-associated secretory phenotype (SASP) which plays important roles in cancer, aging, etc. Cell surface-bound IL-1α is a crucial SASP factor and acts as an upstream regulator to induce NF-κB activity and subsequent SASP genes transcription. IL-1α exports to cell surface via S100A13 protein-dependent non-classical secretory pathway. However, the status of this secretory pathway during cellular senescence and its role in cellular senescence remain unknown. Here, we show that S100A13 is up-regulated in various types of cellular senescence. S100A13 overexpression increases cell surface-associated IL-1α level, NF-κB activity and subsequent multiple SASP genes induction, whereas S100A13 knockdown has an opposite role. We also exhibit that Cu2+ level is elevated during cellular senescence. Lowering Cu2+ level decreases cell surface-bound IL-1α level, NF-κB activity and SASP production. Moreover, S100A13 overexpression promotes oncogene Ras-induced cell senescence (Ras OIS), Doxorubicin-induced cancer cell senescence (TIS) and replicative senescence, while impairment of non-classical secretory pathway of IL-1α delays cellular senescence. In addition, intervention of S100A13 affects multiple SASP and cellular senescence mediators including p38, γ-H2AX, and mTORC1. Taken together, our findings unveil a critical role of the non-classical secretory pathway of IL-1α in cellular senescence and SASP regulation.


Subject(s)
Cellular Senescence , Gene Expression Regulation/physiology , Interleukin-1alpha/metabolism , S100 Proteins/metabolism , Copper/metabolism , HCT116 Cells , Humans , Interleukin-1alpha/genetics , NF-kappa B/metabolism , S100 Proteins/genetics , Transfection
6.
J Cell Sci ; 131(6)2018 03 16.
Article in English | MEDLINE | ID: mdl-29420297

ABSTRACT

Senescent cells develop a senescence-associated secretory phenotype (SASP). The factors secreted by cells with a SASP have multiple biological functions that are mediated in an autocrine or paracrine manner. However, the status of the protein kinase D1 (PKD1; also known as PRKD1)-mediated classical protein secretory pathway, from the trans-Golgi network (TGN) to the cell surface, during cellular senescence and its role in the cellular senescence response remain unknown. Here, we show that the activities or quantities of critical components of this pathway, including PKD1, ADP-ribosylation factor 1 (ARF1) and phosphatidylinositol 4-kinase IIIß (PI4KIIIß), at the TGN are increased in senescent cells. Blocking of this pathway decreases IL-6 and IL-8 (hereafter IL-6/IL-8) secretion and results in IL-6/IL-8 accumulation in SASP-competent senescent cells. Inhibition of this pathway reduces IL-6/IL-8 secretion during Ras oncogene-induced senescence (OIS), retards Ras OIS and alleviates its associated ER stress and autophagy. Finally, targeting of this pathway triggers cell death in SASP factor-producing senescent cells due to the intracellular accumulation of massive amounts of IL-6/IL-8. Taken together, our results unveil the hyperactive state of the protein secretory pathway in SASP-competent senescent cells and its critical functions in mediating SASP factor secretion and the Ras OIS process, as well as in determining the fate of senescent cells.


Subject(s)
Cellular Senescence , Fibroblasts/metabolism , Oncogene Protein p21(ras)/metabolism , Protein Kinase C/metabolism , Secretory Pathway , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , Fibroblasts/cytology , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Oncogene Protein p21(ras)/genetics , Protein Kinase C/genetics , trans-Golgi Network/genetics , trans-Golgi Network/metabolism
7.
PLoS One ; 12(10): e0186592, 2017.
Article in English | MEDLINE | ID: mdl-29040306

ABSTRACT

Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Thus, inhibition of microglial over-activation may have a therapeutic benefit for the treatment of neurodegenerative disorders. Micheliolide (MCL) is a sesquiterpene lactone which inhibits various inflammatory response. However, whether MCL can inhibit neuroinflammation caused by LPS-activated BV2 microglia has not yet been explored. In this study, we demonstrated that treatment of BV2 cells with MCL significantly repressed LPS-stimulated nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, as well as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nitric oxide (NO) induction. MCL also attenuated mRNA levels of multiple pro-inflammatory cytokines and mediators such as iNOS, COX-2, TNF-α, IL-6 and IL-1ß. Mechanistic studies revealed that MCL suppressed LPS-stimulated the activation of IκBα/NF-κB pathway and Akt pathway. Moreover, MCL inhibited LPS-induced the activition of c-Jun N-terminal kinase (JNK), p38 MAPK kinase, and extracellular signal-regulated kinases 1/2 (ERK1/2). Meanwhile, MCL markedly promoted antioxidant protein heme oxygenase-1 (HO-1) expression by enhancing NF-E2-related factor 2 (Nrf2) activity. Together, our results imply that MCL may serve as a neuroprotective agent in neuroinflammation-related neurodegenerative disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gene Expression Regulation/drug effects , Lipopolysaccharides/antagonists & inhibitors , Microglia/drug effects , Neuroprotective Agents/pharmacology , Sesquiterpenes, Guaiane/pharmacology , Animals , Cell Line, Transformed , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microglia/cytology , Microglia/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Aging (Albany NY) ; 8(10): 2308-2323, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27794562

ABSTRACT

Sirtuin6(SIRT6) has been implicated as a key factor in aging and aging-related diseases. However, the role of SIRT6 in cellular senescence has not been fully understood. Here, we show that SIRT6 repressed the expression of p27Kip1 (p27) in cellular senescence. The expression of SIRT6 was reduced during cellular senescence, whereas enforced SIRT6 expression promoted cell proliferation and antagonized cellular senescence. In addition, we demonstrated that SIRT6 promoted p27 degradation by proteasome and SIRT6 decreased the acetylation level and protein half-life of p27. p27 acetylation increased its protein stability. Furthermore, SIRT6 directly interacted with p27. Importantly, p27 was strongly acetylated and had a prolonged protein half-life with the reduction of SIRT6 when cells were senescent, compared with those young cells. Finally, SIRT6 markedly rescued senescence induced by p27. Our findings indicate that SIRT6 decreases p27 acetylation, leading to its degradation via ubiquitin-proteasome pathway and then delays cellular senescence.


Subject(s)
Cell Proliferation/physiology , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Proteasome Endopeptidase Complex/metabolism , Sirtuins/metabolism , Acetylation , Cell Line , Humans , Ubiquitin-Protein Ligases/metabolism
9.
Aging Cell ; 15(6): 1063-1073, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27613566

ABSTRACT

Senescent cells display a senescence-associated secretory phenotype (SASP) which contributes to tumor suppression, aging, and cancer. However, the underlying mechanisms for SASP regulation are not fully elucidated. SIRT1, a nicotinamide adenosine dinucleotide-dependent deacetylase, plays multiple roles in metabolism, inflammatory response, and longevity, etc. However, its posttranscriptional regulation and its roles in cellular senescence and SASP regulation are still elusive. Here, we identify the RNA-binding protein hnRNP A1 as a posttranscriptional regulator of SIRT1, as well as cell senescence and SASP regulator. hnRNP A1 directly interacts with the 3' untranslated region of SIRT1 mRNA, promotes its stability, and increases SIRT1 expression. hnRNP A1 delays replicative cellular senescence and prevents from Ras OIS via upregulation of SIRT1 expression to deacetylate NF-κB, thus blunting its transcriptional activity and subsequent IL-6/IL-8 induction. hnRNP A1 overexpression promotes cell transformation and tumorigenesis in a SIRT1-dependent manner. Together, our findings unveil a novel posttranscriptional regulation of SIRT1 by hnRNP A1 and uncover a critical role of hnRNP A1-SIRT1-NF-κB pathway in regulating cellular senescence and SASP expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...