Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37327100

ABSTRACT

Recently, graph-based multi-view clustering (GMC) has attracted extensive attention from researchers, in which multi-view clustering based on structured graph learning (SGL) can be considered as one of the most interesting branches, achieving promising performance. However, most of the existing SGL methods suffer from sparse graphs lacking useful information, which normally appears in practice. To alleviate this problem, we propose a novel multi-view and multi-order SGL (M 2 SGL) model which introduces multiple different orders (multi-order) graphs into the SGL procedure reasonably. To be more specific, M 2 SGL designs a two-layer weighted-learning mechanism, in which the first layer truncatedly selects part of views in different orders to retain the most useful information, and the second layer assigns smooth weights into retained multi-order graphs to fuse them attentively. Moreover, an iterative optimization algorithm is derived to solve the optimization problem involved in M 2 SGL, and the corresponding theoretical analyses are provided. In experiments, extensive empirical results demonstrate that the proposed M 2 SGL model achieves the state-of-the-art performance in several benchmarks.

2.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36124952

ABSTRACT

Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple molecular datasets. We introduce a Network Embedding method for tumor Stratification by integrating Multi-omics data. Network Embedding method for tumor Stratification by integrating Multi-omics pregroup the samples, integrate the gene features and somatic mutation corresponding to cancer types within each group to construct patient features, and then integrate all groups to obtain comprehensive patient information. The gene features contain network topology information, because it is extracted by integrating deoxyribonucleic acid methylation, messenger ribonucleic acid expression data, and protein-protein interactions through network embedding method. On the one hand, a supervised learning method Light Gradient Boosting Machine is used to classify cancer types based on patient features. When compared with other 3 methods, Network Embedding method for tumor Stratification by integrating Multi-omics has the highest AUC in most cancer types. The average AUC for stratifying cancer types is 0.91, indicating that the patient features extracted by Network Embedding method for tumor Stratification by integrating Multi-omics are effective for tumor stratification. On the other hand, an unsupervised clustering algorithm Density-Based Spatial Clustering of Applications with Noise is utilized to divide single cancer subtypes. The vast majority of the subtypes identified by Network Embedding method for tumor Stratification by integrating Multi-omics are significantly associated with patient survival.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Cluster Analysis , Algorithms , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...