Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(7): 8916-8930, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138789

ABSTRACT

In various ferroelectric-based photovoltaic materials after low-band-gap engineering, the process by which high-field polarization induces the depolarizing electric field (Edp) to accelerate the electron-hole pair separation in the visible light photocatalytic process is still a great challenge. Herein, a series of semiconducting KN-based ferroelectric catalytic materials with narrow multi-band gaps and high-field polarization capabilities are obtained through the Ba, Ni, and Bi co-doping strategy. Stable Edp caused by high-field poling enhanced the visible photocatalytic hydrogen evolution in a 0.99KN-0.01BNB sample with a narrow band gap and optimal ferroelectricity, which can be 5.4 times higher than that of the unpoled sample. The enhanced photocatalytic hydrogen evolution rate can be attributed to the synergistic effect of the significant reduction of the band gap and the high-field-polarization-induced Edp. The change in the band position in the poled sample further reveals that high-field poling may accelerate the migration of carriers through band bending. Insights into the mechanism by which catalytic activity is enhanced through high-field-polarization-induced Edp may pave the way for further development of ferroelectric-based catalytic materials in the photocatalytic field.

3.
Brain Struct Funct ; 224(5): 1753-1766, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31004193

ABSTRACT

Using oddball stimulus with pure tones, researchers have extensively investigated stimulus-specific adaptation (SSA), which has been regarded as a method of novelty detection, from the inferior colliculus (IC) to the auditory cortex (AC). However, until now, it is not clear whether SSA is preserved for natural sounds or whether it exists for spatial cues in the AC. Moreover, it is also unclear whether SSA integrates different types of cues within a single modality such as sound location and sound identity. Here, we addressed these issues using two natural sounds presented at two different locations while simultaneously performing extracellular recordings in the AC of awake rats. Our data showed that SSA was present in the AC for the natural sounds, the pure tones, and the spatial locations in the neuronal population. We also found that the AC response to a double deviant stimulus (a deviant sound at a deviant location) was stronger than that to a single (either a deviant sound or the same sound at a deviant location); this finding suggests that detecting unexpected events benefits from the integration of different cues within the same modality.


Subject(s)
Acoustic Stimulation , Adaptation, Physiological/physiology , Auditory Cortex/physiology , Noise , Wakefulness/physiology , Acoustic Stimulation/methods , Animals , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Inferior Colliculi/physiology , Male , Neurons/physiology , Rats, Wistar
4.
Neuroscience ; 392: 13-24, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30248436

ABSTRACT

Recent electrophysiological studies in animals using oddball stimuli have demonstrated that neurons along the auditory pathway from the inferior colliculus to the auditory cortex (AC) have a strong response to rarely presented stimuli. This phenomenon is termed stimulus-specific adaptation (SSA), which is regarded as novelty detection. However, in the medial geniculate body (MGB), it is not clear whether SSA is frequency dependent or if neurons in the MGB are sensitive to the regularity of the stimuli. In this present study, we analyzed the relationship between stimulus frequency and SSA, as well as explored regularity sensitivity using extracellular recordings in the MGBs of rats with regular and irregular oddball stimuli. It was found MGB neurons exhibited strong SSA when the pure-tone stimulus of the oddball stimulus deviated far from the characteristic frequency, even in the ventral region of the MGB, suggesting that the MGB may contribute to SSA in the primary AC. Moreover, we found the neuronal population in the MGB was sensitive to high-order sound structure, where deviant responses were smaller and standard responses were stronger for irregular oddball stimuli. We conclude that regularity detection occurs in the MGB, but in a manner distinct from the AC.


Subject(s)
Adaptation, Physiological , Auditory Perception/physiology , Geniculate Bodies/physiology , Neurons/physiology , Acoustic Stimulation , Action Potentials , Animals , Female , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...