Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Langmuir ; 39(42): 14977-14983, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37812686

ABSTRACT

In the electroinduced formation of a highly viscous liquid bridge, improving the efficiency of formation is important for industrial applications. This paper presents the preregulation method of the polarization status to shorten the formation time of a liquid bridge. The hindering effect of high viscosity on the polarization of liquid suspensions was investigated. The formation time of the liquid bridge is shortened, and stability is improved by prepolarizing the initial liquid film, with a maximum reduction in the average and standard deviation of times by 12.65 and 2.52 s, respectively. These effects are confirmed at different viscosities and voltages. In addition, this method has no obvious influence on the shape of the liquid bridge. This study provides an approach to improve the electroinduced formation.

2.
Environ Res ; 237(Pt 1): 116884, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37574098

ABSTRACT

Thermally enhanced anoxic biodegradation is emerging as a promising method for removing PAHs from subsurface soil. However, some PAHs still remain in soil following remediation with thermally enhanced anoxic degradation due to low bioavailability of these residual PAHs. The effects of five surfactants (Tween 80, TX 100, Brij 30, SDS, and SDBS) on the desorption of PAHs, anoxic degradation of PAHs, and native bacteria in soil at high temperature (60 °C) were evaluated in this study. The desorption of PAHs in soil increased as surfactant concentration increased. Low doses of surfactants (0.08%, w/w) enhanced the growth of potential PAHs degrading bacteria and promoted the anoxic degradation of PAHs, whereas high doses of surfactants (0.3%-0.8%, w/w) displayed the opposite effect, and the degree of inhibition increased with increasing surfactant concentration. The results also indicated that the inhibitory effect of anionic surfactants (SDS and SDBS) on microbial growth and PAHs degradation is stronger than that of nonionic surfactants (Tween 80, TX 100 and Brij 30) at the same concentration. These results suggest a feasible way of enhancing the anoxic degradation of PAHs in soil where heat cannot be effectively utilized when in situ thermal desorption (ISTD) technology is used.

3.
RSC Adv ; 13(20): 13405-13411, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37143918

ABSTRACT

The stretching breakup of a conical liquid bridge is the core process of micro-dispensing. To precisely control the droplet loading and improve the dispensing resolution, a detailed study of bridge breakup with a moving contact line is required. A conical liquid bridge is established by an electric field and stretching breakup is investigated here. The effect of contact line state is investigated by examining the pressure at the symmetry axis. Compared to the pinned case, the moving contact line causes a shift of the pressure maximum from the bridge neck to top, and it facilitates the evacuation of the bridge top. For the moving case, factors affecting the contact line motion are then considered. The results show that the increase of the stretching velocity U and the decrease of the initial top radius R top accelerate the contact line motion. And the amount of contact line movement is basically constant. To analyze the influence of the moving contact line on bridge breakup, neck evolution is tracked under different U. An increase of U decreases the breakup time and increases the breakup position. Based on the breakup position and the remnant radius, the influences of U and R top on remnant volume V d are examined. It is found that V d decreases with an increase of U and increases with an increase of R top. Accordingly, different sizes of remnant volume can be obtained by adjusting U and R top. This is helpful for the optimization of liquid loading for transfer printing.

4.
Electrophoresis ; 41(10-11): 909-916, 2020 06.
Article in English | MEDLINE | ID: mdl-32145034

ABSTRACT

In the present study, we numerically demonstrate an approach for separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. The dual streams are constructed by an intermediate sheath flow, after which the negative magnetophoretic force induced by an array of permanent magnets dominates the separation of diamagnetic particles. A simple and efficient numerical model is developed to calculate the motions of particles under the action of magnetic field and flow field. Effects of the average flow velocity, the ratio of sheath fluid flow to sample fluid flow, the number of the magnet pair as well as the position of magnet pair are investigated. The optimal parametric condition for complete separation is obtained through the parametric analysis, and the separation principle is further elucidated by the force analysis. The separation of smaller micro and sub-micro diamagnetic particles is finally demonstrated. This study provides an insight into the negative magnetophoretic phenomenon and guides the fabrication of feasible, low-cost diagnostic devices for sub-micro particle separation.


Subject(s)
Colloids/chemistry , Magnetics/methods , Magnets/chemistry , Computer Simulation , Microfluidic Analytical Techniques/instrumentation , Particle Size
5.
RSC Adv ; 10(34): 20374-20384, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520428

ABSTRACT

System reliability evaluation is very important for safe operation and sustainable development of complex chemical production systems. This paper proposes a hybrid model for the reliability evaluation of chemical production systems. First, the influential factors in system reliability are categorized into five aspects: Man, Machine, Material, Management and Environment (4M1E), each of which represents a component subsystem of a complex chemical production process. Second, the Support Vector Machine (SVM) algorithm is used to develop machine learning models for the reliability evaluation of each subsystem, during which Particle Swarm Optimization (PSO) is applied for model parameter optimization. Third, the Random Forest (RF) algorithm is employed to correlate the reliability of the five subsystems with the reliability of the corresponding whole chemical production system. Then, Markov Chain Residual error Correction (MCRC) is adopted to improve the predictive accuracy of the machine learning model. The efficacy of the proposed hybrid model is tested on a case study, and the results indicate that the proposed model is capable of delivering satisfactory prediction results.

6.
Huan Jing Ke Xue ; 40(3): 1302-1309, 2019 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-31087978

ABSTRACT

In order to explore the degradation mechanism of 1,2-dichloroethane (1,2-DCA), which is one of the refractory saturated chlorinated hydrocarbons, the groundwater and aquifer soil from a chlorinated hydrocarbon contaminated site in Beijing were collected to carry out microcosm experiments under anaerobic conditions using zero-valent iron (ZVI) coupled with biological action. The removal rate of 1,2-DCA under different conditions was investigated by adding a composite agent consisting of micron zero-valent iron (mZVI), a biological carbon source, and a few nutrients. Changes of the groundwater physical and chemical parameters were monitored. The results showed that, when the dosage of the composite agent reached 3%, the concentration of 1,2-dichloroethane could be reduced to below the detection limit within 15 days. Neutral pH and the presence of SO42- were more conducive to the dechlorination of 1,2-DCA. After 30 days, an obvious increase in the ethene concentration was detected (0.17-0.52 mg·L-1) and no significant vinyl chloride, chloroethane, or ethane was observed in the microcosms, illustrating that the dihaloelimination was the main degradation pathway of 1,2-DCA in the system. In addition, the groundwater could maintain a low oxidation-reduction potential (-100 to -300 mV), dissolved oxygen (<0.5 mg·L-1), and a suitable pH value (6.5-7.5) for a long time under the synergy of mZVI and a biological carbon source. This was beneficial to the activity of anaerobic microorganisms and to the dechlorination reaction.

7.
Yi Chuan Xue Bao ; 31(11): 1268-74, 2004 Nov.
Article in Chinese | MEDLINE | ID: mdl-15651680

ABSTRACT

In the present study,Chinese Spring-Imperial (1 R-7R) wheat-rye disomic addition lines were hybridized with Chinese Spring-2C (derived from Aegilops cylindrica) disomic addition lines. The F1 hybrids were examined by mitotic and meiotic analysis. There were observed abnormal chromosome configurations. A total of 430 F2 plants were obtained by self-pollination. Chromosomes aberrations, such as translocation, deletions, isobrachial and dicentromere chromosomes, are identified in F2 individual plants by C-banding combined with fluorescent in situ hybridization (FISH). Additionally, chromosome spontaneous substitutions such as 2C substituting for wheat chromosomes 2A, 2B and 2D were also observed. The rule and frequency of chromosome aberration in F2 are the following: 22 out of 430 F2 plants (5.11%) were found involving aberration rye chromosomes. Among them, 10 plants were identified as wheat-rye chromosome translocation lines comprising 2.3%. Rye chromosome deletions comprised 12 of them (2.79%). 3 isobrachial aberrations were detected (about 0.7%), too. Most of the translocation lines are with wheat centromere, only one of them is with rye centromere. Rye chromosome aberrations occurred unevenly among homoeologous groups. There were 5 in 1R, 3 in 2R, 1 in 3R, 3 in 4R, 6 in 5R and 4 in 6R. The majority of the translocation lines are terminal translocation. 54 out of the total 430 progenies are wheat deletions,and 27 are distributed in the A group, 20 in the B group and 7 in the D group respectively. Finally,we discussed the possible cause for the uneven chromosome aberration among homoeologous groups in wheat and rye as well as the effect characteristics of 2C on wheat and rye chromosome.


Subject(s)
Chromosome Aberrations , Secale/genetics , Triticum/genetics , Chromosome Banding , Chromosome Deletion , In Situ Hybridization, Fluorescence , Translocation, Genetic
8.
Spine (Phila Pa 1976) ; 28(24): 2660-6, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14673366

ABSTRACT

STUDY DESIGN: Animal model study of eight healthy commercial cats was conducted. OBJECTIVE: To determine whether pulsed electromagnetic field (PMF) stimulation results in improvement of function after contusive spinal cord injury in cats. SUMMARY OF BACKGROUND DATA: PMF stimulation has been shown to enhance nerve growth, regeneration, and functional recovery of peripheral nerves. Little research has been performed examining the effects of PMF stimulation on the central nervous system and no studies of PMF effects on in vivo spinal cord injury (SCI) models have been reported. MATERIALS AND METHODS: PMF stimulation was noninvasively applied for up to 12 weeks to the midthoracic spine of cats with acute contusive spinal cord injury. The injury was produced using a weight-drop apparatus. Motor functions were evaluated with the modified Tarlov assessment scale. Morphologic analyses of the injury sites and somatosensory-evoked potential measurements were conducted to compare results between PMF-stimulated and control groups. RESULTS: There was a significant difference in locomotor recovery between the PMF-stimulated and control groups. Although not statistically significant, PMF-stimulated spinal cords demonstrated greater sparing of peripheral white matter and smaller lesion volumes compared to controls. Somatosensory-evoked potential measurements indicated that the PMF-stimulated group had better recovery of preinjury waveforms than the control group; however, this observation also was not statistically significant because of the small sample size. CONCLUSIONS: This preliminary study indicates that pulsed magnetic fields may have beneficial effects on motor function recovery and lesion volume size after acute spinal cord injury.


Subject(s)
Electromagnetic Fields , Spinal Cord Injuries/therapy , Acute Disease , Animals , Cats , Evoked Potentials, Somatosensory , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...