Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Andrology ; 6(5): 680-689, 2018 09.
Article in English | MEDLINE | ID: mdl-29959832

ABSTRACT

Condensed sperm chromatin is a prerequisite for natural fertilization. Some reports suggested the prevalence of chromatin condensation defects in teratozoospermia cases with head anomalies; conversely, earlier studies exemplified its occurrence in morphologically normal spermatozoa too. The aim of this study was to compare the condensation defects in correlation with head anomalies among different groups of subfertile males and its impact on the rate of fertilization in assisted reproduction procedures. Ultrastructure analysis of spermatozoa through scanning electron microscopy and atomic force microscopy could facilitate an in-depth evaluation of sperm morphology. Nuclear condensation defects (%) in spermatozoa were analyzed in 666 subjects, and its effect on the rate of fertilization was analyzed in 116 IVF and 90 intracytoplasmic sperm injection cases. There was no correlation of condensation defects with head anomalies (%). Student's t-test showed no significant changes in mean values of condensation defects in abnormal semen samples in comparison with the normal group. Condensation defects were observed in normal spermatozoa too, which was negatively associated with the rate of fertilization in IVF (p < 0.01), but intracytoplasmic sperm injection outcome remained unaffected. Ultrastructure study revealed sperm morphological features in height, amplitude, and three-dimensional views in atomic force microscopy images presenting surface topography, roughness property of head, and compact arrangement of mitochondria over axoneme with height profile at nanoscale. In pathological forms, surface roughness and nuclear thickness were marked higher than the normal spermatozoa. Thus, percentage of normal spermatozoa with condensation defects could be a predictive factor for the rate of fertilization in IVF. From diverse shapes of nucleus in AFM imaging, it could be predicted that defective nuclear shaping might be impeding the activity of some proteins/ biological motors, those regulate the proper Golgi spreading over peri-nuclear theca.


Subject(s)
Infertility, Male/pathology , Spermatozoa/pathology , Adult , Chromatin Assembly and Disassembly , Fertilization in Vitro , Humans , Infertility, Male/physiopathology , Male , Microscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Retrospective Studies , Semen Analysis , Sperm Head/pathology , Sperm Head/ultrastructure , Sperm Injections, Intracytoplasmic , Spermatozoa/ultrastructure
2.
Nat Commun ; 4: 2696, 2013.
Article in English | MEDLINE | ID: mdl-24176908

ABSTRACT

Topological surface states protected by mirror symmetry are of interest for spintronic applications. Such states were predicted to exist in the rocksalt IV-VI semiconductors, and several groups have observed the surface states in (Pb,Sn)Te, (Pb,Sn)Se and SnTe using photoemission. An underlying assumption in the theory is that the surface states arise from bulk states describable as massive Dirac states, but this assumption is untested. Here we show that the thermoelectric response of the bulk states displays features specific to the Dirac spectrum. By relating the carrier density to the peaks in the quantum oscillations, we show that the first (N=0) Landau level is non-degenerate. This finding provides robust evidence that the bulk states are indeed massive Dirac states. In the lowest Landau level, Sxx displays a striking linear increase versus magnetic field characteristic of massive Dirac fermions. In addition, the Nernst signal displays a sign anomaly in the gap-inverted phase at low temperatures.

3.
Phys Rev Lett ; 106(1): 016804, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21231765

ABSTRACT

Preferential orientation of the stripe phases in the quantum Hall (QH) regime has remained a puzzle since its discovery. We show experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the QH regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along the [110] or [110] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...