Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39071216

ABSTRACT

Background: Synthetic fibers have many benefits in clinical practice; however, they cause microplastic pollution, and their unaffordable price increases treatment costs. Natural silk fibers require biocompatibility assessment. This study investigated the effects of natural and synthetic fiber-reinforced composites (FRCs) on the cytotoxicity of fibroblast cell lines. Methods: Three commercial synthetic fibers (polyethylene, quartz, and E-glass) and two silk fibers from Bombyx mori and Samia ricini cocoons were employed. These fibers were made into FRC samples (n=6) by impregnation in flowable composite using a brass mold (25×2×2 mm). NIH/3T3 mouse fibroblasts were cultured in Dulbecco's modified eagle medium, supplemented, and seeded in 2×104 cells/mL. They were stored at 37 °C under 5% CO2 for 24 hours. The FRC samples were made into powder, eluted in dimethylsulfoxide, continued with PBS, supplemented with Dulbecco's modified eagle medium (DMEM), and exposed to cells for 24 hours. Blank (medium only) and control (cells and medium) samples were included. Subsequently, MTT was added for 4 h and read by enzyme-linked immunosorbent assay (λ=570 nm). Cell viability (%) was calculated and analyzed using one-way ANOVA (α=0.05). Results: All groups of FRCs showed>80% cell viability. One-way ANOVA showed no significant difference between FRC groups regarding the viability of fibroblast cell lines (P>0.05). Conclusion: Both natural silk and synthetic fibers exhibit low cytotoxicity to fibroblast cell lines. B. mori and S. ricini silk fibers showed the potential to be used as alternative synthetic fibers.

2.
Heliyon ; 8(6): e09552, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35711989

ABSTRACT

Objectives: To evaluate the biocompatibility and mechanical properties of experimental bis-phenol-A and bis-GMA free E-glass fiber-reinforced composites (FRCs) prepared with hexanediol dimethacrylate (HDDMA) based resin. Methods: Two ratios of HDDMA/TEGDMA resin were evaluated: exp-1 (70/30 wt.%) and exp-2 (50/50 wt.%) with two bis-GMA resin control groups (bis-GMA/MMA and bis-GMA/TEGDMA resins, both 70/30 wt.%). E-glass fibers were embedded into the resins to prepare FRCs specimens. Biocompatibility was assessed for cytoviability and biofilm formation with Streptococcus mutans, Streptococcus sanguinis, Enterococcus faecalis, and Candida albicans. Mechanical properties were evaluated for flexural strength and hardness (24 h, water storage 1 and 28 days), water sorption (1, 7, 14, and 28 days), contact angle, and surface roughness. The data were analyzed statistically by one-way and two-way ANOVA (p < 0.05). Results: Cytoviability of the experimental groups was significantly higher than the control groups (p < 0.05). The exp-1 cytoviability (98.2 ± 1.3%) met the ISO 10993-5 standard requirement for noncytotoxic materials. The adherence of bacteria to the experimental FRCs was visibly less than the controls, while Candida albicans adhered visibly more to the experimental groups than the controls (p < 0.05). Flexural strength showed slightly higher values for controls than for the experimental groups. The exp-1 hardness value was significantly higher in the control groups for all storage conditions (p < 0.05). The water sorption of the experimental groups was significantly higher than the controls. The surface roughness indicated no significant difference (p = 0.87). The exp-1 showed a higher contact angle with the control groups. Conclusion: The experimental HDDMA/TEGDMA-based FRCs might be potential alternatives for bis-GMA-based FRCs. Clinical significance: The HDDMA/TEGDMA E-glass FRCs might provide biocompatible restorations.

3.
Contemp Clin Dent ; 11(2): 136-140, 2020.
Article in English | MEDLINE | ID: mdl-33110326

ABSTRACT

BACKGROUND: The success of root canal treatment is influenced by hermetic root canal obturation. This study was conducted to analyze the apical sealing ability after the addition of calcite-synthesized hydroxyapatite (HA) as an epoxy resin sealer filler. METHODS: Calcite-synthesized HA powder was prepared using the microwave hydrothermal process. HA resin sealer powder and epoxy resin paste (3:1) were mixed, and concentrations of 10%, 20%, 30%, 40%, and 50% were prepared. A sample of thirty maxillary incisors were prepared in the root canal and then, the crown was cut to leave 13 mm of the root and a working length of 12 mm. The root canal was prepared using the crown-down technique and irrigated using 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid alternately. The samples were divided into six groups, with each group consisting of five roots. Group I was obturated with gutta percha using an epoxy resin sealer without HA (HA-0%) as a control group. In each of the Groups II, III, IV, V, and VI, 10% HA resin sealer, 20% HA, 30% HA, 40% HA, and 50% HA were used. All the samples were incubated in a 10-ml simulated body fluid solution at 37°C for 4 weeks. Apical closure density measurement was done using a scanning electron microscope, and the results were analyzed using the Kruskal-Wallis and Mann-Whitney U-tests. RESULTS: A significant increase in the apical sealing ability was observed in the HA-20% sealer group and the HA-30% and HA-40% groups compared to that in the control group. However, the HA-50% sealer group showed a decrease in the apical sealing ability, whereas the HA-10% sealer group showed no difference. The HA-30% had the highest sealing ability than other concentrations. CONCLUSION: The addition of calcite-synthesized HA as a filler at concentrations of 20%, 30%, and 40% increased the apical sealing ability of the epoxy resin sealer.

4.
Int J Biomater ; 2012: 493075, 2012.
Article in English | MEDLINE | ID: mdl-22919391

ABSTRACT

Objectives. The aim of this paper was to evaluate the cytotoxicity of Indonesian silkworm cocoon extract of Cricula triphenestrata on human fibroblasts. Methods and Materials. The cocoon shells of the silkworm Cricula triphenestrata were degumming. The shells were mixed with an aqueous solution of 0.3% Na(2)CO(3) at 98°C for 1 hour. The solution was then dialyzed in cellulose membranes against deionized water for 3 days. The cocoon shells extract powder was collected via rotary evaporation and dried under freeze dryer. Cell culture medium was exposed to Cricula triphenestrata cocoon extract (0.01-100 µg/mL) for 24 hours. The primary human gingival fibroblasts were exposed to the treated cell culture medium for 24 hours. Cytotoxicity evaluation was done by MTT method. The data were analyzed by one-way ANOVA. Result. The result revealed no significant cytotoxicity of Cricula triphenestrata cocoon extract against human fibroblasts at a concentration up to 100 µg/mL (P > 0.05). Conclusion. Cricula triphenestrata cocoon extract was not cytotoxic on human gingival fibroblast cells.

5.
Int J Biomater ; 2012: 432372, 2012.
Article in English | MEDLINE | ID: mdl-22919390

ABSTRACT

Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

SELECTION OF CITATIONS
SEARCH DETAIL