Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(3): 1424-1435, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38324797

ABSTRACT

In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.


Subject(s)
Curcumin , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Curcumin/chemistry , Polyglycolic Acid/chemistry , Temperature , Delayed-Action Preparations , Glycols , Polyesters , Particle Size , Nanoparticles/chemistry , Water
2.
Int J Pharm ; 564: 39-47, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30981872

ABSTRACT

We investigated the effect of variation in the molecular weight of hypromellose (HPMC) on the oral absorption of fenofibrate (FFB) nanocrystal. Four types of HPMC with different molecular weights and sodium dodecyl sulfate (SDS) were used as dispersion stabilizers for FFB nanocrystal suspension. Wet-milling of FFB crystal with HPMC and SDS formed diamond-shaped FFB nanocrystals with approximately 150 nm diameter. HPMC was strongly adsorbed onto the FFB nanocrystal interface, and the amount of HPMC adsorbed was not dependent on the molecular weight of HPMC. However, the decrease in the molecular weight of adsorbed HPMC led to an improvement in the permeability of FFB nanocrystal through the mucin layer. The decrease in molecular weight of HPMC enhanced the flexibility of FFB nanocrystal interface and effectively inhibited its interaction with mucin. This led to faster diffusion of FFB nanocrystal through mucin. In vivo oral absorption studies showed rapid FFB absorption from FFB nanocrystal formulations using HPMC of low molecular weights. The present study revealed that the molecular weight of the dispersion stabilizer for drug nanocrystal formulation should be taken into consideration to achieve improved absorption of poorly water-soluble drugs after oral administration.


Subject(s)
Fenofibrate/chemistry , Hypolipidemic Agents/chemistry , Hypromellose Derivatives/chemistry , Mucins/chemistry , Nanoparticles/chemistry , Administration, Oral , Animals , Diffusion , Fenofibrate/blood , Fenofibrate/pharmacokinetics , Hypolipidemic Agents/blood , Hypolipidemic Agents/pharmacokinetics , Hypromellose Derivatives/pharmacokinetics , Intestinal Absorption , Male , Molecular Weight , Permeability , Rats, Sprague-Dawley , Sodium Dodecyl Sulfate/chemistry
3.
Int J Pharm ; 546(1-2): 263-271, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29763688

ABSTRACT

We present the absorption improvement mechanism of fenofibrate (FFB), a Biopharmaceutics Classification System (BCS) class II drug, from self-microemulsifying drug delivery systems (SMEDDS), centered on improving the diffusion of FFB through the unstirred water layer (UWL). Four SMEDDS formulations containing Labrafac™ lipophile WL 1349 (WL1349) or Labrafil® M 1944CS (M1944) oils and NIKKOL HCO-40 (HCO40) or NIKKOL HCO-60 (HCO60) surfactants were prepared. Every SMEDDS formulation formed microemulsion droplets of approximately 30 nm. In vitro tests showed that the microemulsion droplets containing M1944 had relatively small FFB solubilization capacities, causing larger amounts of FFB to be dissolved in the bulk water phase, compared to the droplets containing WL1349. The diffusivity of the microemulsion droplets through the mucin solution layer was enhanced when using HCO40 compared to HCO60. The oral absorption in rats was the highest when using the SMEDDS formulation containing M1944 and HCO40. High FFB distribution in the bulk water phase and fast diffusion of microemulsion droplets through the mucus layer contributed to the efficient delivery of FFB molecules through the UWL to the epithelial cells, leading to enhanced FFB absorption.


Subject(s)
Drug Delivery Systems , Fenofibrate/administration & dosage , Hypolipidemic Agents/administration & dosage , Intestinal Absorption , Administration, Oral , Animals , Emulsions , Fenofibrate/chemistry , Fenofibrate/pharmacokinetics , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacokinetics , Male , Mucins/chemistry , Mucus/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...