Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 308(Pt 1): 136278, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057349

ABSTRACT

Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.


Subject(s)
Drinking Water , Uranium , Adsorption , Hydrogen-Ion Concentration , Kinetics , Polymers , Uranium/analysis , Wastewater
2.
J Appl Toxicol ; 38(4): 504-513, 2018 04.
Article in English | MEDLINE | ID: mdl-29171043

ABSTRACT

Graphene oxide (GO) is considered a promising material for biological application due to its unique properties. However, the potential toxicity of GO to aquatic organism particularly bluegill sun fish cells (BF-2) is unexplored or remains poorly understood. GO-induced cytotoxicity and oxidative stress in BF-2 cells were assessed using a battery of biomarkers. Two different biological assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake were used to evaluate the cytotoxicity of GO on BF-2 cells. It was found that GO induced dose- and time-dependent cytotoxicity on BF-2 cells. BF-2 cells exposed to lower concentration of GO (40 µg ml-1 ) for 24 induced morphological changes when compared to their respective controls. As evidence for oxidative stress lipid peroxidation, superoxide dismutase, catalase, reactive oxygen species and 8-hydroxy-2'-deoxyguanosine levels were increased and glutathione levels were found to decline in BF-2 cells after treatment with GO. Our findings demonstrate that GO when exposed to BF-2 fish cells cause oxidative stress.


Subject(s)
Graphite/toxicity , Oxidative Stress/drug effects , Perciformes/metabolism , 8-Hydroxy-2'-Deoxyguanosine , Animals , Catalase/drug effects , Catalase/metabolism , Cell Line , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism
3.
Sci Rep ; 4: 4039, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24509508

ABSTRACT

We report a new type of magnetic nanofluids, which is based on a hybrid composite of nanodiamond and nickel (ND-Ni) nanoparticles. We prepared the nanoparticles by an in-situ method involving the dispersion of caboxylated nanodiamond (c-ND) nanoparticles in ethylene glycol (EG) followed by mixing of nickel chloride and, at the reaction temperature of 140°C, the use of sodium borohydrate as the reducing agent to form the ND-Ni nanoparticles. We performed their detailed surface and magnetic characterization by X-ray diffraction, micro-Raman, high-resolution transmission electron microscopy, and vibrating sample magnetometer. We prepared stable magnetic nanofluids by dispersing ND-Ni nanoparticles in a mixture of water and EG; we conducted measurements to determine the thermal conductivity and viscosity of the nanofluid with different nanoparticles loadings. The nanofluid for a 3.03% wt. of ND-Ni nanoparticles dispersed in water and EG exhibits a maximum thermal conductivity enhancement of 21% and 13%, respectively. For the same particle loading of 3.03% wt., the viscosity enhancement is 2-fold and 1.5-fold for water and EG nanofluids. This particular magnetic nanofluid, beyond its obvious usage in heat transfer equipment, may find potential applications in such diverse fields as optics and magnetic resonance imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...