Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 1): 129198, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191107

ABSTRACT

Patients and healthcare systems stand to gain much from the use of substances that can accelerate wound healing. In this research work, a polymeric patch was fabricated using polymers like poly (vinyl alcohol) (PVA) and Moringa oleifera gum (MO) incorporated with graphene oxide (GO) and naringin (Nar) (drug). This study determined the impact of using PVA/MO/GO/Nar polymeric patch on wound healing via in vitro and in vivo investigations. Graphene oxide was synthesized by modified Hummer's method. The synthesized sample was characterized using XRD, FT-IR, RAMAN Spectroscopy, FESEM and HRTEM. Antibacterial analysis of the GO on four different bacteria was studied through well diffusion, colony count, growth curve and biofilm assay. Biocompatibility was analysed by haemolysis assay. The morphology, antibacterial activity, haemolysis assay, swelling, degradation, porosity, water vapour transmission rate, drug release, blood pump model, in-vitro scratch assay and MTT assay were analysed for the fabricated polymeric patches under in-vitro condition. The PVA/MO/GO/Nar patch has shown enhanced wound healing in in-vivo wound healing experiments on albino Wistar rats.


Subject(s)
Flavanones , Graphite , Moringa oleifera , Rats , Animals , Humans , Spectroscopy, Fourier Transform Infrared , Hemolysis , Polyvinyl Alcohol/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers , Ethanol , Rats, Wistar
3.
Heliyon ; 9(9): e19161, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662739

ABSTRACT

Ultraviolet-B irradiation is a common environmental stressor that has detrimental effects on human skin. Natural sunscreens are well-known for their ability to benefit inflamed sunburn and dry skin. This study examined the effect of formulated Ipomoea carnea herbal cream on UVB-induced skin damage. We screened the bioactive compounds of I. carnea crude extract, showing significant antioxidant activity. Additionally, we evaluated the cytotoxicity, revealing that I. carnea extract has less toxicity to vero cells (IC50 98.45 µg/mL) than to A375 cells (IC50 48.95 µg/mL). Based on this, we formulated the I. carnea herbal cream (FIHC) at 50, 100 and 200 mg concentrations and evaluated its organoleptic characteristics. Then, the rats were exposed to UVB radiation (32,800 J/m2) four times/week (on alternate days) before the cream was applied topically to the dorsal skin surface. Under UVB stress without treatment, rats showed deep dermal damage. In contrast, rats treated with the FIHC exhibited significantly reduced sunburn. Moreover, the histopathological and biochemical assays were confirmed by the topical application of FIHC, which had potentially reduced the skin elasticity and maintained the imbalanced enzyme and non-enzymatic antioxidant activity. Our findings amply demonstrate that the FIHC significantly accelerated the recovery of UVB-induced lesions through antioxidant and down-regulation of skin photodamage.

4.
BioTechnologia (Pozn) ; 103(3): 249-260, 2022.
Article in English | MEDLINE | ID: mdl-36605824

ABSTRACT

Fungal skin infection is a major skin health issue worldwide. For the treatment of fungal infections, systematic antifungal therapies are frequently prescribed. The aim of this study is to prepare an antifungal cold cream from Caralluma adscendens var. attenuata to treat deep dermal fungal infection in the skin layer. To achieve this, different concentrations of plant extract-based cold cream were prepared, and their in vitro characteristic features such as color, texture, pH, viscosity, spreadability, stability, permeation, were analyzed together with ex vivo evaluation to identify their applicability in the treatment of acute rat skin irritation. After 72 h of induction of Candida albicans infection in rats (7 days, two times/day), C. adscendens var. attenuata cold cream was applied topically. In rats with C. albicans induction without any treatment, adverse skin damages were visible in the form of red rashes, whereas in those with the formulated cold cream application, significantly less skin damage and inflammation were observed on a dose-dependent basis. Moreover, the reduced microbial colonization and histopathology of the rat skin without any treatment indicated the successful invasion of C. albicans and showed the morphological changes caused by candidal infection. However, treatment with the C. adscendens var. attenuata cream significantly inhibited candida colonization and reversed the morphological changes. In addition, the formulated C. adscendens var. attenuata cold cream showed good spreadability, permeation, and viscosity. Hence, it can act as a potent antifungal topical agent for the treatment of C. albicans skin infection without any irritation, thus safeguarding the skin tissue.

5.
Heliyon ; 7(6): e07360, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34235284

ABSTRACT

The synthesis of copper nanoparticles (CuNPs) using Wrightia tinctoria (Wt) R.Br extract is defined in this article as being convenient, environmentally friendly, and non-toxic. UV-visible spectrophotometry, FT-IR, XRD, particle size analyser, SEM-EDAX and TEM methods were used to describe the physicochemical properties of Wt extract mediated synthesized CuNPs (Wt-CuNPs). The Wt-CuNPs synthesized was found to be monodispersed and spherical, with an average size of 15 nm. Gas chromatography and mass spectrometry (GC-MS) research revealed that the Wt R.Br plant extract contains various phytochemical compounds. The properties of Wt-CuNPs were verified by the findings of characterization tests. Via in silico molecular docking experiments with established targets, the underlying mechanisms of cytotoxicity against breast cancer and larvicidal behaviour against Aedes aegypti of Wt-CuNPs were investigated. Interestingly, in vitro cytotoxicity studies showed 50% cell death (IC50) of Wt-CuNPs treated MCF-7 cells and Vero Cells (Kidney epithelial cells) were displayed at 119.23 µg.mL-1 and 898.75 µg.mL-1, respectively. Also, Wt-CuNPs showed least LC50 and LC90 values for larvicidal activity against A. aegypti were of 32.10 µg.mL-1 and 21.70 µg.mL-1, respectively. Furthermore, Wt-CuNPs is found to be less toxic and biocompatible in haemolytic assays. The findings clearly showed that biosynthesized Wt-CuNPs have been used as a possible anticancer and larvicidal agent, as well as being environmentally friendly.

6.
3 Biotech ; 11(4): 155, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33747705

ABSTRACT

Ultraviolet radiation-induced sunburns are characterized by pigmented, wrinkled, and dried skin, with rashes and red spots. Chemical sunscreen lotion shows beneficial effects, but it shows the adverse side effect while in continuous usage. Natural substances of plant origin are deemed a possible cause of UV radiation through sunscreen resources. On this basis, we formulated the cold cream from the Caralluma adscendens Var. attenuata (CAVA) plant extract. The phytocompounds were studied by using GC-MS. The antioxidant potential of the plant extract was determined, and the CAVA showed cytotoxicity on A375 skin melanoma cells determined by MTT assay. The FT-IR spectra analysis confirmed the chemical nature of crude and crosslinking between cold creams. The cream was applied topically to rats pre-exposed to UV-B radiation (32,800 J/m2) four times/week (on alternate days). UV-B exposed without any treatment rats showed increased red spots or wrinkles (5 cm2). In contrast, the cold cream treatment application on irradiated skin has significantly reduced the size of rashes and red spots and the wound was contracted in a dose-dependent manner. Furthermore, histopathology of the experimental rat skin confirmed that CAVA cream treatment significantly reduced the epidermal thickening, damage in dermis and epidermis layers, and restructured the hair follicles. This study suggests that the cream formulated using CAVA can alleviate the damages caused by the UV-B-irradiation at a high level and safeguard the skin tissues. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02694-y.

SELECTION OF CITATIONS
SEARCH DETAIL
...