Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400286, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895746

ABSTRACT

We present structural properties at different temperatures and high-pressure (HP) of La3Rh4Sn13 which is one of the interesting systems in the Remika phase RE3Rh4Sn13 (RE = Sr, Ca, La, Pr, Ce) quasi-skutterudite series using synchrotron diffraction. Data at ambient conditions revealed the presence of several weak reflections, which could be accounted only with a superlattice I* structure (I4132) with lattice parameter a ~19.457 Å. However, above 350 K, a complete suppression of the weak superlattice reflections of the I*  structure is observed. Data at higher temperatures is found to be well described by the I structure (Pm-3n) having half the lattice parameter compared to the I* structure. HP-XRPD at ambient temperature showed that pressures greater than 7.5 GPa result in similar suppression of the weak I* superlattice reflections. Data at higher pressures is found to be well described by the I structure (Pm-3n), similar to the high-temperature phase. HP Raman measurements demonstrated changes that seem to be consistent with a locally more ordered structure as in the case of the I* à I transition. Our findings on La3Rh4Sn13 open up new avenues to study unexplored HP phenomena, especially the superconductivity in these Remika phase quasi-skutterudites.

2.
J Phys Condens Matter ; 34(24)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35344945

ABSTRACT

Sc5Rh6Sn18with a cage-type quasiskutterudite crystal lattice and type II superconductivity, with superconducting transition temperatureTc= 4.99 K, was investigated under hydrostatic high-pressure (HP) using electrical transport, synchrotron x-ray diffraction (XRD) and Raman spectroscopy. Our data show that HP enhance the metallic nature andTcof the system.Tcis found to show a continuous increase reaching to 5.24 K at 2.5 GPa. Although the system is metallic in nature, Raman spectroscopy investigations at ambient pressure revealed the presence of three weak modes at 165.97, 219.86 and 230.35 cm-1, mostly related to the rattling atom Sc. The HP-XRD data revealed that the cage structure was stable without any structural phase transition up to ∼7 GPa. The lattice parameters and volume exhibited a smooth decrease without any anomalies as a function of pressure in this pressure range. In particular, a second order Birch-Murnaghan equation of state can describe the pressure dependence of the unit cell volume well, yielding a bulk modulus of ∼97 GPa. HP Raman investigations revealed a linear shift of all the three Raman modes to higher wavenumbers with increasing pressure up to ∼8 GPa. As the pressure enhances the bond overlap, thus inducing more electronic charges into the system, HP-XRD and Raman results may indicate the possibility of obtaining higherTcwith increasing pressures in this pressure range.

SELECTION OF CITATIONS
SEARCH DETAIL
...