Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Stapp Car Crash J ; 57: 89-137, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24435728

ABSTRACT

NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents. Tests simulating a 6-year-old child asleep in a booster seat, with its head lying directly on its shoulder on top of the inflatable seat belt, were considered by engineering judgment, to represent a worst case scenario for interaction of an inflating seat belt with the head and neck of a child and/or small occupant. All evaluations resulted in ATD responses below Injury Assessment Reference Values reported by Mertz et al. (2003). In addition, the tests of the PMHS subjects resulted in no injuries from interaction of the inflating seat belt with the heads, necks, and chests of the subjects. Given the results from the ATD and PMHS tests, it was concluded that the injury risk to children and small occupants from deployment of inflatable seat belt systems is low.


Subject(s)
Child Restraint Systems , Posture , Seat Belts , Biomechanical Phenomena , Child , Child, Preschool , Female , Humans , Male , Manikins , Safety/standards , Sleep , Thoracic Injuries/physiopathology
2.
Stapp Car Crash J ; 55: 161-97, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22869309

ABSTRACT

This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats. Further research is needed to assess the field effectiveness, customer comfort and acceptance and change in the belt usage rate with the inflatable seatbelt system.


Subject(s)
Accidents, Traffic , Seat Belts , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Equipment Design , Female , Humans , Male , Manikins , Middle Aged , Wounds and Injuries/etiology , Wounds and Injuries/prevention & control
3.
Molecules ; 14(4): 1448-55, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19384276

ABSTRACT

A Quantitative Structure Activity Relationship (QSAR) study has been an attempted on a series of 88 N-aryl derivatives which display varied inhibitory activity towards both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), targets in Alzheimer's drug discovery. QSAR models were derived for 53 and 61 compounds for each target, respectively, with the aid of genetic function approximation (GFA) technique using topological, molecular shape, electronic and structural descriptors. The predictive ability of the QSAR model was evaluated using a test set of 26 compounds for AChE (r(2)(pred) = 0.857), (q(2)= 0.803) and 20 compounds for BChE (r(2)(pred)= 0.882), (q(2)= 0.857). The QSAR models point out that AlogP98, Wiener, Kappa-1-AM, Dipole-Mag, and CHI-1 are the important descriptors effectively describing the bioactivity of the compounds.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Quantitative Structure-Activity Relationship , Acetylcholinesterase/metabolism , Aged, 80 and over , Algorithms , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Drug Discovery , Humans , Molecular Structure
4.
Stapp Car Crash J ; 49: 67-84, 2005 Nov.
Article in English | MEDLINE | ID: mdl-17096269

ABSTRACT

There has been much debate over "whiplash"-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rearend impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios. Of the 38 tests conducted using 10 cadavers, there were seven tests from three cadavers in which the positions of the upper and lower incisors could be tracked with precision using imageprocessing software. The relative protrusion, retrusion, and mouth opening were computed from these seven sets of data, providing a better understanding of TMJ motion. Based on this limited data, the average maximum protrusion, retrusion and mouth opening were 1.6+/-1.8, 1.1+/-0.7, and 1.2+/-1.2 mm, respectively. These values appear to fall within normal physiological limits experienced during daily activities such as mastication. It is concluded that low-speed, rear-end automobile collisions do not appear to create the motion required to initiate injury to the TMJ.

SELECTION OF CITATIONS
SEARCH DETAIL