Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Network ; 34(1-2): 1-25, 2023.
Article in English | MEDLINE | ID: mdl-36514820

ABSTRACT

The segmentation of brain images is a leading quantitative measure for detecting physiological changes and for analysing structural functions. Based on trends and dimensions of brain, the images indicate heterogeneity. Accurate brain tumour segmentation remains a critical challenge despite the persistent efforts of researchers were owing to a variety of obstacles. This impacts the outcome of tumour detection, causing errors. For addressing this issue, a Feature-Map based Transform Model (FMTM) is introduced to focus on heterogeneous features of input picture to map differences and intensity based on transition Fourier. Unchecked machine learning is used for reliable characteristic map recognition in this mapping process. For the determination of severity and variability, the method of identification depends on symmetry and texture. Learning instances are taught to improve precision using predefined data sets, regardless of loss of labels. The process is recurring until the maximum precision of tumour detection is achieved in low convergence. In this research, FMTM has been applied to brain tumour segmentation to automatically extract feature representations and produce accurate and steady performance because of promising performance made by powerful transition Fourier methods. The suggested model's performance is shown by the metrics processing time, precision, accuracy, and F1-Score.


Subject(s)
Algorithms , Brain Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Neoplasm Recurrence, Local , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain/diagnostic imaging
2.
Biomed Phys Eng Express ; 7(5)2021 07 14.
Article in English | MEDLINE | ID: mdl-34260415

ABSTRACT

Magnetic Resonance Imaging (MRI) inputs are most noticeable in diagnosing brain tumors via computer and manual clinical understanding. Multi-level detection and classification of the images utilizing computer-aided processing depend on labels and annotations. Though the two processes are dynamic and time-consuming, without which the precise accuracy is less assured. For augmenting the accuracy in processing un-labeled or annotation-less images, this article introduces Absolute Classification-Detection Model (AC-DM). This model uses a conventional neural network for training the morphological variations proficient of achieving label-less classification and tumor detection. The traditional neural network trains the images based on differential lattice morphology for classification and detection. In this process, training for the lattices and their corresponding gradients is validated to improve the precision of the regional analysis. This helps to retain the precision of identifying tumors. The variations are recognized for their lattice mapping in the detected boundaries of the input image. The detected boundaries help to map accurate lattices for adapting morphological transforms. Thus, the partial and complex processing in detecting tumors is restrained in the suggested model, adapting to the classification. The efficiency of the suggested model is verified utilizing accuracy, precision, sensitivity, and classification time.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Networks, Computer
3.
Sensors (Basel) ; 19(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324070

ABSTRACT

According to the survey on various health centres, smart log-based multi access physical monitoring system determines the health conditions of humans and their associated problems present in their lifestyle. At present, deficiency in significant nutrients leads to deterioration of organs, which creates various health problems, particularly for infants, children, and adults. Due to the importance of a multi access physical monitoring system, children and adolescents' physical activities should be continuously monitored for eliminating difficulties in their life using a smart environment system. Nowadays, in real-time necessity on multi access physical monitoring systems, information requirements and the effective diagnosis of health condition is the challenging task in practice. In this research, wearable smart-log patch with Internet of Things (IoT) sensors has been designed and developed with multimedia technology. Further, the data computation in that smart-log patch has been analysed using edge computing on Bayesian deep learning network (EC-BDLN), which helps to infer and identify various physical data collected from the humans in an accurate manner to monitor their physical activities. Then, the efficiency of this wearable IoT system with multimedia technology is evaluated using experimental results and discussed in terms of accuracy, efficiency, mean residual error, delay, and less energy consumption. This state-of-the-art smart-log patch is considered as one of evolutionary research in health checking of multi access physical monitoring systems with multimedia technology.


Subject(s)
Deep Learning , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Wearable Electronic Devices , Algorithms , Bayes Theorem , Blood Pressure , Body Temperature , Electrocardiography , Electroencephalography , Electromyography , Humans , Multimedia , Neural Networks, Computer
4.
J Med Syst ; 42(11): 228, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30311011

ABSTRACT

In this paper, MODWT is used to decompose the Electrocardiography (ECG) signals and to identify the changes of R waves in the noisy input ECG signal. The MODWT is used to handle the arbitrary changes in the input signal. The R wave's detctected by the proposed framework is used by the doctors and careholders to take necessary action for the patients. MATLAB simulink model is used to develop the simulation model for the MODWT method. The performance of the MODWT based remote health monitoring system method is comparatively analyzed with other ECG monitoring approaches such as Haar Wavelet Transformation (HWT) and Discrete Wavelet Transform (DWT). Sensitivity, specificity, and Receiver Operating Characteristic (ROC) curve are calculated to evaluate the proposed Internet of Things with MODWT based ECG monitoring system. We have used MIT-BIH Arrythmia Database to perform the experiments.


Subject(s)
Electrocardiography, Ambulatory/methods , Internet , Telemedicine/methods , Wavelet Analysis , Algorithms , Computer Security , Data Compression/methods , Humans , Remote Sensing Technology , Sensitivity and Specificity , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...