Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 3(8): 9956-9965, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459124

ABSTRACT

The impact of lithium-ion implantation and postannealing processes on improving the electrical conductivity and field electron emission (FEE) characteristics of nitrogen-doped nanocrystalline diamond (nNCD) films was observed to be distinctly different from those of undoped NCD (uNCD) films. A high-dose Li-ion implantation induced the formation of electron trap centers inside the diamond grains and amorphous carbon (a-C) phases in grain boundaries for both types of NCD films. Postannealing at 1000 °C healed the defects, eliminated the electron trap centers, and converted the a-C into nanographitic phases. The abundant nanographitic phases in the grain boundaries of the nNCD films as compared to the uNCD films made an interconnected path for effectual electron transport and consequently enhanced the FEE characteristics of nNCD films.

2.
Nanoscale ; 7(10): 4377-85, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25684389

ABSTRACT

Hybridization of gold nanoparticles in the ultrananocrystalline diamond materials improves the electrical conductivity of the materials to a high level of 230 (Ω cm)(-1) with a sheet carrier concentration of 8.9 × 10(20) cm(-2). These hybrid materials show enhanced electron field emission (EFE) properties, viz. a low turn-on field of 2.1 V µm(-1) with a high EFE current density of 5.3 mA cm(-2) (at an applied field of 4.9 V µm(-1)) and the life-time stability up to a period of 372 min. The fabrication of these hybrid materials with high conductivity and superior EFE behaviors is a direct and simple process which opens new prospects in flat panel displays and high brightness electron sources.

3.
ACS Appl Mater Interfaces ; 6(7): 4911-9, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24624900

ABSTRACT

The effects of Cu and Au ion implantation on the structural and electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films were investigated. High electrical conductivity of 186 (Ω•cm)(-1) and enhanced EFE properties with low turn-on field of 4.5 V/µm and high EFE current density of 6.70 mA/cm(2) have been detected for Au-ion implanted UNCD (Au-UNCD) films that are superior to those of Cu-ion implanted UNCD (Cu-UNCD) ones. Transmission electron microscopic investigations revealed that Au-ion implantation induced a larger proportion of nanographitic phases at the grain boundaries for the Au-UNCD films in addition to the formation of uniformly distributed spherically shaped Au nanoparticles. In contrast, for Cu-UNCD films, plate-like Cu nanoparticles arranged in the row-like pattern were formed, and only a smaller proportion of nanographite phases along the grain boundaries was induced. From current imaging tunneling spectroscopy and local current-voltage curves of scanning tunneling spectroscopic measurements, it is observed that the electrons are dominantly emitted from the grain boundaries. Consequently, the presence of nanosized Au particles and the induction of abundant nanographitic phases in the grain boundaries of Au-UNCD films are believed to be the authentic factors, ensuing in high electrical conductivity and outstanding EFE properties of the films.

4.
ACS Appl Mater Interfaces ; 5(4): 1294-301, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23327783

ABSTRACT

Conducting diamond nanowires (DNWs) films have been synthesized by N2-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.

5.
ACS Appl Mater Interfaces ; 4(8): 4169-76, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22823911

ABSTRACT

Enhanced electron field emission (EFE) properties have been observed for ultrananocrystalline diamond (UNCD) films grown on Au-coated Si (UNCD/Au-Si) substrates. The EFE properties of UNCD/Au-Si could be turned on at a low field of 8.9 V/µm, attaining EFE current density of 4.5 mA/cm(2) at an applied field of 10.5 V/µm, which is superior to that of UNCD films grown on Si (UNCD/Si) substrates with the same chemical vapor deposition process. Moreover, a significant difference in current-voltage curves from scanning tunneling spectroscopic measurements at the grain and the grain boundary has been observed. From the variation of normalized conductance (dI/dV)/(I/V) versus V, bandgap of UNCD/Au-Si is measured to be 2.8 eV at the grain and nearly metallic at the grain boundary. Current imaging tunneling spectroscopy measurements show that the grain boundaries have higher electron field emission capacity than the grains. The diffusion of Au into the interface layer that results in the induction of graphite and converts the metal-to-Si interface from Schottky to Ohmic contact is believed to be the authentic factors, resulting in marvelous EFE properties of UNCD/Au-Si.

SELECTION OF CITATIONS
SEARCH DETAIL
...