Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mitochondrial DNA B Resour ; 6(3): 1207-1208, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33829086

ABSTRACT

Microphis deocata (deocata pipefish), belonging to family Syngnathidae, is one of the important indigenous ornamental fish species listed as near threatened in the IUCN red list. Here, we first report the complete mitochondrial genome of deocata pipefish using Illumina next-generation sequencing platform. The total length of the mitogenome is 16,526 bp. It encompasses 13 protein coding genes, 2 ribosomal rRNAs, and 22 tRNAs. The WANCY region (a cluster of five tRNA genes) contains the 50 bp OL light strand origin of replication. Phylogenetic analysis of Syngnathidae revealed M. deocata to cluster with Oostethus manadensis, forming a sister group with Doryrhamphus japonicas and Dunckerocampus dactyliophorus. The mitochondrial genome sequence data generated in the present study will play an important role in population genetic analysis and developing conservation strategies for this species.

2.
Article in English | MEDLINE | ID: mdl-29992021

ABSTRACT

BACKGROUND: The homeobox containing transcription factor Nanog plays crucial roles in embryonic development/proliferation and/or maintenance of spermatogonial stem cells (SSCs) via interacting with transcription factors such as Oct4 and Sox2 in mammals. However, knowledge of its exact mechanistic pathways remains unexploited. Very little is known about teleost Nanog. Information on the Nanog gene of farmed rohu carp (Labeo rohita) is lacking. We cloned and characterized the Nanog gene of rohu carp to understand the expression pattern in early developmental stages and also deduced the genomic organization including promoter elements. RESULTS: Rohu Nanog (LrNanog) cDNA comprised an open reading frame of 1,161 nucleotides bearing a structural homeodomain; whereas, the genomic structure contained four exons and three introns suggesting that it is homologous to mammalian counterparts. Phylogenetically, it was closely related to freshwater counterparts. Protein sequence (386 AA of 42.65 kDa) comparison revealed its low similarity with other vertebrate counterparts except that of the conserved homeodomain. Tissue distribution analysis revealed the existence of LrNanog transcripts only in adult gonads. The heightened abundances in the ovary and proliferating spermatogonia suggested its participations in maternal inheritance and male germ cell development. The potentiating abundances from fertilized egg onwards peaking at blastula stage vis- à-vis decreasing levels from gastrula stage onwards demonstrated its role in embryonic stem cell development. We also provided evidence of its presence in SSCs by western blotting analysis. Further, the promoter region was characterized, predicting a basal core promoter and other consensus elements. CONCLUSION: The molecular characterization of LrNanog and its documented expression profiling at transcript and protein levels are indicative of its functional linkage with embryonic/spermatogonial stem cell maintenance. This is the first report of LrNanog genomic organization including its promoter sequence information with predicted regulatory elements of a large-bodied carp species. This will be useful for elucidating its mechanism expression in future. Nanog could be used as a potential biomarker for proliferating carp SSCs.

3.
Interdiscip Sci ; 10(4): 641-652, 2018 Dec.
Article in English | MEDLINE | ID: mdl-28660537

ABSTRACT

Immune response mediated by toll-like receptor 22 (TLR22), only found in teleost/amphibians, is triggered by double-stranded RNA binding to its LRR (leucine-rich repeats) ecto-domain. Accumulated evidences suggested that missense mutations in TLR genes affect its function. However, information on mutation linked pathogen recognition for TLR22 was lacking. The present study was commenced for predicting the effect of non-synonymous single-nucleotide polymorphisms (nsSNPs) on the pathogen recognizable LRR domain of TLR22 of farmed carp, Labeo rohita. The sequence-based algorithms (SIFT, PROVEAN and I-Mutant2.0) indicated that three SNPs (out of 27) such as p.L159F (rs76759876) and p.L529P (rs749355507) of LRR, and p.I836M (rs750758397) of intracellular motifs could potentially disrupt protein function. The 3D structure was generated using MODELLER 9.13 and further validated by SAVEs server. The simulated molecular docking of native TLR22 and mutants with poly I:C ligand indicated that mutations positioned at p.L159F and p.L529P of the LRR region affects the binding affinity significantly. This is the first kind of study of predicting nsSNPs of teleost TLR22 with disturbed ligand binding affinity with its extra-cellular LRR domain and thereby likely hindrance in subsequent signal transduction. This study serves as a guide for in vivo evaluation of impact of mutation on immune response mediated by teleost TLR22 gene.


Subject(s)
Carps/genetics , Computer Simulation , Poly I-C/metabolism , Polymorphism, Single Nucleotide/genetics , Toll-Like Receptors/genetics , Animals , Molecular Docking Simulation , Mutant Proteins/chemistry , Mutation, Missense/genetics , Protein Binding , Structural Homology, Protein , Toll-Like Receptors/chemistry
4.
Transgenic Res ; 26(5): 577-589, 2017 10.
Article in English | MEDLINE | ID: mdl-28681201

ABSTRACT

Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.


Subject(s)
CRISPR-Cas Systems/genetics , Fishes/genetics , Gene Editing/trends , Genetic Engineering/methods , Animals , Models, Animal
5.
Mitochondrial DNA B Resour ; 1(1): 746-747, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-33473612

ABSTRACT

The complete mitochondrial genome of Etroplus suratensis, the Green chromide cichlid, was determined for the first time through NGS method. The genome is 16,467 bp (Accession no. KU301747) in length and consisted of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. Organization of genes and their order are in accordance with other vertebrates. The overall base composition on plus strand was A: 28.3%, G: 15.2%, C: 30.9%, T: 25.6%, and the A + T content 53.9%. The control region contains a putative termination-associated sequence and three conserved sequence blocks. This mitogenome sequence data would play an important role in population genetics and phylogenetics of cichlid fish of India.

6.
Zoolog Sci ; 22(1): 101-10, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15684590

ABSTRACT

We incubated different radiolabeled steroid precursors with intact chub mackerel ovarian follicles to clarify the synthetic pathways of steroid hormones during vitellogenesis and following final oocyte maturation (FOM). During vitellogenesis, estradiol-17beta (E2) was synthesized from pregnenolone via 17-hydroxypregnenolone, 17-hydroxyprogesterone, androstenedione, and testosterone. The physiological significance of the intermediate metabolites of E2 in the ovarian follicles was examined by comparing follicular steroidogenesis between gonochoric and hermaphroditic fish species. After vitellogenesis, the steroidogenic pathway shifted from E2 to maturation-inducing hormone (MIH) production owing to the inactivation of 17,20-lyase and the activation of 20 beta-hydroxysteroid dehydrogenase. Of the new steroids produced during FOM, 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) was most effective at inducing germinal vesicle breakdown in vitro. Circulating levels of 17,20beta-P increased specifically around the time of germinal vesicle migration, while another FOM-specific 20beta-hydroxylated progestin, 17,20beta,21-trihydroxy-4-pregnen-3-one, was present at consistently low levels during FOM. These results indicate that 17,20beta-P is the MIH of chub mackerel.


Subject(s)
Gonadal Steroid Hormones/biosynthesis , Hermaphroditic Organisms , Ovarian Follicle/metabolism , Perciformes/metabolism , Sex Determination Processes/metabolism , Analysis of Variance , Animals , Autoradiography , Estradiol/biosynthesis , Estradiol/blood , Female , Gonadal Steroid Hormones/blood , Hydroxyprogesterones/blood , Perciformes/physiology , Pregnenolone/metabolism , Vitellogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...