Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 123(7): 517-527, 2019 07.
Article in English | MEDLINE | ID: mdl-31196521

ABSTRACT

Exploring the secondary structure information of nuclear ribosomal internal transcribed spacer 2 (ITS2) has been a promising approach in species delimitation. However, Compensatory base changes (CBC) concept employed in this approach turns futile when CBC is absent. This prompted us to investigate the utility of insertion/deletion (INDELs) and substitutions in fungal delineation at species level. Upon this rationale, 116 strains representing 97 species, belonging to 6 genera (Colletotrichum, Boeremia, Leptosphaeria, Peyronellaea, Plenodomus and Stagonosporopsis) of Ascomycota were retrieved from Q-bank for molecular morphometric analysis. CBC, INDELs and substitutions between the species of their respective genus were recorded. Most species combinations lacked CBC. Among the substitution events, transitions were predominant. INDELs were less frequent than the substitutions. These evolutionary events were mapped upon the helices to discern species specific variation sites. In 68 species unique variation sites were recognised. The remaining 29 species shared absolute similarity with distinctly named species. The variation sites catalogued in them overlapped with other distinct species and resulted in the blurring of species boundaries. Species specific variation sites recognized in this study are the preliminary results and they could be discerned with absolute confidence when larger datasets encompassing all described species of genera were investigated. They could be of potential use in barcoding fungi at species level. This study also concludes that the ITS2 molecular morphometric analysis is an efficient third dimensional study of the fungal species delimitation. This may help to avoid the false positives in species delimitations and to alleviate the challenges in molecular characterization.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , DNA, Fungal/chemistry , DNA, Ribosomal Spacer/chemistry , Phylogeny , Base Sequence , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Genetic Variation , Nucleic Acid Conformation , Pilot Projects , Species Specificity
2.
PLoS One ; 14(4): e0215024, 2019.
Article in English | MEDLINE | ID: mdl-30964914

ABSTRACT

Molecular morphometrics is an emerging third dimensional aspect of fungal species delimitation. They have been demonstrated to be more informative than conventional barcoding methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magnoliopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence-secondary structural features based phylogenetic analysis, also known as molecular morphometrics. A total of 392 FEF isolates were obtained from the Aglaia elaeagnoidea, Flacourtia inermis, and Premna serratifolia leaves and grouped into 98 morphotypes. Among these host plants, P. serratifolia showed the maximum percentage of colonization frequency. Representatives of each morphotype was sequenced and subjected to further molecular characterization. The results revealed that morphotypes were belonged to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were recognized from A. elaeagnoidea, F. inermis, and P. serratifolia respectively. Diversity indices were higher in A. elaeagnoidea, despite it accounted for a modest 16.8% of total isolates recorded in this study. The genus Colletotrichum was predominant in A. elaeagnoidea (39%) and P. serratifolia (48%). Similarly, Diaporthe (43%) was dominant in F. inermis. Several host-specific species were also observed. This study concludes that these plants host diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure information along with the sequence provides a further dimension to resolve the inherent problems in identification of fungal species.


Subject(s)
Aglaia/genetics , Ascomycota/physiology , DNA, Ribosomal Spacer/genetics , Endophytes/physiology , Flacourtia/genetics , Lamiaceae/genetics , Aglaia/microbiology , Ascomycota/genetics , Biodiversity , DNA, Fungal/genetics , Flacourtia/microbiology , Lamiaceae/microbiology , Phylogeny , Species Specificity
3.
Bioinformation ; 10(6): 320-8, 2014.
Article in English | MEDLINE | ID: mdl-25097373

ABSTRACT

Endophytic fungi are inhabitants of plants, living most part of their lifecycle asymptomatically which mainly confer protection and ecological advantages to the host plant. In this present study, 48 endophytic fungi were isolated from the leaves of three medicinal plants and characterized based on ITS2 sequence - secondary structure analysis. ITS2 secondary structures were elucidated with minimum free energy method (MFOLD version 3.1) and consensus structure of each genus was generated by 4SALE. ProfDistS was used to generate ITS2 sequence structure based phylogenetic tree respectively. Our elucidated isolates were belonging to Ascomycetes family, representing 5 orders and 6 genera. Colletotrichum/Glomerella spp., Diaporthae/Phomopsis spp., and Alternaria spp., were predominantly observed while Cochliobolus sp., Cladosporium sp., and Emericella sp., were represented by singletons. The constructed phylogenetic tree has well resolved monophyletic groups with >50% bootstrap value support. Secondary structures based fungal systematics improves not only the stability; it also increases the precision of phylogenetic inference. Above ITS2 based phylogenetic analysis was performed for our 48 isolates along with sequences of known ex-types taken from GenBank which confirms the efficiency of the proposed method. Further, we propose it as superlative marker for reconstructing phylogenetic relationships at different taxonomic levels due to their lesser length.

SELECTION OF CITATIONS
SEARCH DETAIL
...