Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31588253

ABSTRACT

This paper reports the influence of antennas on radio signal propagation in tunnels and underground mines. Radio signal propagation measurement results in a concrete tunnel and underground mines using antenna types with various radiation patterns, i.e., omnidirectional, Yagi, patch, and circular, are reported. Extensive measurements were taken in various scenarios which include vertical, horizontal, and circular polarization for line-of-sight (LoS) radio signal propagation at four frequencies (455, 915, 2450, and 5800 MHz) that are common to many voice and data transport radio systems used in underground mines. The results show that antenna pattern has a strong influence on the uniformity of radio signal propagation gain in the near zone and typically does not significantly influence behavior in the far zone, except for a constant gain offset.

2.
Appl Comput Electromagn Soc J ; 29(10): 755-762, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26213457

ABSTRACT

Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...