Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 10(7): 2390-2402, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38850242

ABSTRACT

Understanding the sepsis-induced immunological response can be facilitated by identifying phenotypic changes in immune cells at the single-cell level. Mass cytometry, a novel multiparametric single-cell analysis technique, offers considerable benefits in characterizing sepsis-induced phenotypic changes in peripheral blood mononuclear cells. Here, we analyzed peripheral blood mononuclear cells from 20 sepsis patients and 10 healthy donors using mass cytometry and employing 23 markers. Both manual gating and automated clustering approaches (PhenoGraph) were used for cell identification, complemented by uniform manifold approximation and projection (UMAP) for dimensionality reduction and visualization. Our study revealed that patients with sepsis exhibited a unique immune cell profile, marked by an increased presence of monocytes, B cells, and dendritic cells, alongside a reduction in natural killer (NK) cells and CD4/CD8 T cells. Notably, significant changes in the distributions of monocytes and B and CD4 T cells were observed. Clustering with PhenoGraph unveiled the subsets of each cell type and identified elevated CCR6 expression in sepsis patients' monocyte subset (PG#5), while further PhenoGraph clustering on manually gated T and B cells discovered sepsis-specific CD4 T cell subsets (CCR4low CD20low CD38low) and B cell subsets (HLA-DRlow CCR7low CCR6high), which could potentially serve as novel diagnostic markers for sepsis.


Subject(s)
Flow Cytometry , Sepsis , Humans , Sepsis/immunology , Male , Female , Middle Aged , Flow Cytometry/methods , Monocytes/immunology , Aged , Leukocytes, Mononuclear/immunology , Phenotype , Dendritic Cells/immunology , B-Lymphocytes/immunology , Adult , Immunophenotyping , Killer Cells, Natural/immunology , CD4-Positive T-Lymphocytes/immunology , Biomarkers/blood , Biomarkers/analysis
2.
Carbohydr Polym ; 284: 119189, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35287907

ABSTRACT

Chitosan being non-toxic, biocompatible, and biodegradable gained considerable interest among agriculturists. Our research review discusses about the role of Cs, chitosan nanoparticles (CsNPs), and modified chitosan biomaterials (CsBMs) under salt stress to improve growth parameters such as plant height, weight, stem width, fruit yield, pigments such as chlorophyll a, b, total chlorophyll, and carotenoid contents, as well as antioxidant and non-antioxidative enzymes. Upon Cs treatment and salt stress, total aminoacids (TAA), glutamic acids, and gamma-aminobutyric acid (GABA) were increased. Furthermore, Cs activated SOS1 pathway and increased various gene transcripts involved in sodium compartmentalization, proton motive force, energy production, and phenol metabolism. On the other hand, CsNPs and modified CsBMs treated plants under salinity stress increased indole terpene alkaloid metabolism, defense related genes, decreased ROS production by enhancing JA signaling, increased essential oil, anthocyanins, membrane stability, alkaloids, and diterpene glycosides. This is the first review that specifically brings insights about the physiological and biochemical parameters of the plants by comparing Cs/CsNPs/modified CsBMs treatment options under salt stress and encourages the use of CsNPs and modified CsBMs compared to Cs for better plant function under salinity stress.


Subject(s)
Chitosan , Nanoparticles , Anthocyanins , Antioxidants/metabolism , Biocompatible Materials , Chitosan/chemistry , Chlorophyll A , Nanoparticles/chemistry , Salinity , Salt Stress , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...