Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 920: 170980, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38373456

ABSTRACT

Global rice cultivation significantly contributes to anthropogenic methane emissions. The methane emissions are caused by methane-producing microorganisms (methanogenic archaea) that are favoured by the anoxic conditions of paddy soils and small carbon molecules released from rice roots. However, different rice cultivars are associated with differences in methane emission rates suggesting that there is a considerable natural variation in this trait. Starting from the hypothesis that sugar allocation within a plant is an important factor influencing both yields and methane emissions, the aim of this study was to produce high-yielding rice lines associated with low methane emissions. In this study, the offspring (here termed progeny lines) of crosses between a newly characterized low-methane rice variety, Heijing 5, and three high-yielding elite varieties, Xiushui, Huayu and Jiahua, were selected for combined low-methane and high-yield properties. Analyses of total organic carbon and carbohydrates showed that the progeny lines stored more carbon in above-ground tissues than the maternal elite varieties. Also, metabolomic analysis of rhizospheric soil surrounding the progeny lines showed reduced levels of glucose and other carbohydrates. The carbon allocation, from roots to shoots, was further supported by a transcriptome analysis using massively parallel sequencing of mRNAs that demonstrated elevated expression of the sugar transporters SUT-C and SWEET in the progeny lines as compared to the parental varieties. Furthermore, measurement of methane emissions from plants, grown in greenhouse as well as outdoor rice paddies, showed a reduction in methane emissions by approximately 70 % in the progeny lines compared to the maternal elite varieties. Taken together, we report here on three independent low-methane-emission rice lines with high yield potential. We also provide a first molecular characterisation of the progeny lines that can serve as a foundation for further studies of candidate genes involved in sugar allocation and reduced methane emissions from rice cultivation.


Subject(s)
Carbon , Oryza , Carbon/metabolism , Oryza/metabolism , Methane/analysis , Soil , Carbohydrates , Sugars/metabolism , Agriculture , Nitrous Oxide/analysis
2.
Environ Sci Pollut Res Int ; 30(40): 92950-92962, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37501024

ABSTRACT

Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32° N) and Sweden (lat. 59° N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies.


Subject(s)
Agriculture , Oryza , Agriculture/methods , Temperature , Methane/analysis , Soil/chemistry , China , Nitrous Oxide/analysis
3.
New Phytol ; 236(5): 1951-1963, 2022 12.
Article in English | MEDLINE | ID: mdl-36076311

ABSTRACT

Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies.


Subject(s)
Picea , Tracheophyta , Picea/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Meristem/metabolism , Reproduction/genetics , Tracheophyta/metabolism
4.
Front Plant Sci ; 9: 1625, 2018.
Article in English | MEDLINE | ID: mdl-30483285

ABSTRACT

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P. abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.

5.
Nat Plants ; 3: 17061, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28481330

ABSTRACT

Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study high-resolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes high-throughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.


Subject(s)
Arabidopsis/genetics , Gene Expression Profiling/methods , Genes, Plant , Picea/genetics , Populus/genetics , Feasibility Studies , Reproducibility of Results
6.
Nucleic Acids Res ; 45(6): 3253-3265, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28175342

ABSTRACT

Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation.


Subject(s)
Arabidopsis/genetics , Chromatin/metabolism , Gene Expression Regulation, Plant , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Gene Duplication , Genes, Plant , Genome, Plant , Histone Code , Promoter Regions, Genetic , Transcription Factors/genetics , Transcriptional Activation
7.
Front Plant Sci ; 6: 970, 2015.
Article in English | MEDLINE | ID: mdl-26579190

ABSTRACT

Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right.

8.
Plant J ; 77(6): 954-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24438514

ABSTRACT

Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time-consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co-introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic-resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high-throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant-specific DNA herbicides.


Subject(s)
Genetic Engineering/methods , Oligodeoxyribonucleotides, Antisense/genetics , Plants, Genetically Modified/genetics , RNA, Plant/genetics , Arabidopsis/genetics , Base Sequence , Gene Expression Regulation, Plant , Genetic Markers/genetics , Molecular Sequence Data , Mutation , Oligodeoxyribonucleotides, Antisense/metabolism , Oryza/genetics , Petunia/genetics , Phenotype , Plant Leaves/genetics , RNA Interference , RNA, Plant/metabolism , Seedlings/genetics , Sequence Analysis, DNA , Nicotiana/genetics , Transformation, Genetic
9.
New Phytol ; 200(1): 261-275, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23772833

ABSTRACT

Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers.


Subject(s)
Biological Evolution , Gene Expression Regulation, Plant , Genes, Plant , MADS Domain Proteins/genetics , Organogenesis, Plant/genetics , Picea/genetics , Plant Structures/growth & development , Mutation , Ovule , Picea/growth & development , Plant Development/genetics , Plant Proteins/genetics , Plant Shoots/growth & development , Reproduction/genetics , Seeds , Tracheophyta/genetics , Tracheophyta/growth & development
10.
Plant Physiol ; 161(2): 813-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23221834

ABSTRACT

Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A(+)) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce.


Subject(s)
Gene Expression Profiling , MADS Domain Proteins/genetics , Picea/genetics , Plant Proteins/genetics , Crosses, Genetic , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , MADS Domain Proteins/classification , MADS Domain Proteins/metabolism , Mutation , Norway , Phenotype , Phylogeny , Picea/growth & development , Picea/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sweden
11.
Ann Bot ; 110(4): 923-34, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22778149

ABSTRACT

BACKGROUND AND AIMS: During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. METHODS: Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. KEY RESULTS: Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. CONCLUSIONS: The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.


Subject(s)
Gene Expression Regulation, Plant/genetics , Indoleacetic Acids/metabolism , Picea/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Biological Transport , Cell Differentiation/genetics , Computational Biology , Cotyledon/cytology , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Gene Expression Regulation, Developmental/genetics , Meristem/cytology , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Multigene Family , Mutation , Phenotype , Phylogeny , Picea/cytology , Picea/growth & development , Picea/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Seedlings/cytology , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/cytology , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
13.
Plant Mol Biol ; 78(6): 545-59, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22318676

ABSTRACT

SHORT-INTERNODES/STYLISH (SHI/STY)-family proteins redundantly regulate development of lateral organs in Arabidopsis thaliana. We have previously shown that STY1 interacts with the promoter of the auxin biosynthesis gene YUCCA (YUC)4 and activates transcription of the genes YUC4, YUC8 and OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF (ORA)59 independently of protein translation. STY1 also affects auxin levels and auxin biosynthesis rates. Here we show that STY1 induces the transcription of 16 additional genes independently of protein translation. Several of these genes are tightly co-expressed with SHI/STY-family genes and/or down-regulated in SHI/STY-family multiple mutant lines, suggesting them to be regulated by SHI/STY proteins during plant development. The majority of the identified genes encode transcription factors or cell expansion-related enzymes and functional studies suggest their involvement in stamen and leaf development or flowering time regulation.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Carrier Proteins/physiology , Genes, Plant , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Base Sequence , Carrier Proteins/genetics , Cell Proliferation , DNA, Plant/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Knockout Techniques , Indoleacetic Acids/metabolism , Mutation , Oxygenases/genetics , Oxygenases/physiology , Plants, Genetically Modified , Trans-Activators/genetics , Trans-Activators/physiology , Transcription Factors/genetics , Transcription Factors/physiology
14.
Plant Physiol ; 156(4): 1967-77, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21642442

ABSTRACT

The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.


Subject(s)
Evolution, Molecular , Genes, Plant/genetics , Multigene Family/genetics , Phosphatidylethanolamine Binding Protein/genetics , Plants/genetics , Seeds/genetics , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Phosphatidylethanolamine Binding Protein/metabolism , Phylogeny , Picea/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
15.
Planta ; 234(3): 527-39, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21541665

ABSTRACT

Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Picea/drug effects , Picea/genetics , Pinus sylvestris/drug effects , Pinus sylvestris/genetics , Cotyledon/genetics , Cotyledon/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Genes, Plant/drug effects , Phylogeny , Picea/growth & development , Picea/metabolism , Pinus sylvestris/growth & development , Pinus sylvestris/metabolism , Plant Somatic Embryogenesis Techniques , Seeds/genetics , Seeds/growth & development
16.
Plant Cell ; 22(2): 349-63, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20154152

ABSTRACT

The establishment and maintenance of auxin maxima in vascular plants is regulated by auxin biosynthesis and polar intercellular auxin flow. The disruption of normal auxin biosynthesis in mouse-ear cress (Arabidopsis thaliana) leads to severe abnormalities, suggesting that spatiotemporal regulation of auxin biosynthesis is fundamental for normal growth and development. We have shown previously that the induction of the SHORT-INTERNODES/STYLISH (SHI/STY) family member STY1 results in increased transcript levels of the YUCCA (YUC) family member YUC4 and also higher auxin levels and auxin biosynthesis rates in Arabidopsis seedlings. We have also shown previously that SHI/STY family members redundantly affect development of flowers and leaves. Here, we further examine the function of STY1 by analyzing its DNA and protein binding properties. Our results suggest that STY1, and most likely other SHI/STY members, are DNA binding transcriptional activators that target genes encoding proteins mediating auxin biosynthesis. This suggests that the SHI/STY family members are essential regulators of auxin-mediated leaf and flower development. Furthermore, the lack of a shoot apical meristem in seedlings carrying a fusion construct between STY1 and a repressor domain, SRDX, suggests that STY1, and other SHI/STY members, has a role in the formation and/or maintenance of the shoot apical meristem, possibly by regulating auxin levels in the embryo.


Subject(s)
Arabidopsis Proteins/physiology , Carrier Proteins/physiology , Indoleacetic Acids/metabolism , Trans-Activators/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Carrier Proteins/chemistry , Molecular Sequence Data , Promoter Regions, Genetic , Sequence Homology, Amino Acid
17.
Nat Cell Biol ; 11(11): 1347-54, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19820703

ABSTRACT

Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals. Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases. Although metacaspases are essential for PCD, their natural substrates remain unknown. Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression, is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.


Subject(s)
Apoptosis/physiology , Evolution, Molecular , Nuclear Proteins/physiology , Endonucleases , Gene Knockdown Techniques , HeLa Cells , Humans , Hydrolysis , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , RNA Interference
18.
New Phytol ; 184(3): 552-565, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19659659

ABSTRACT

In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements.


Subject(s)
Genes, Plant , Seedlings/growth & development , Seedlings/genetics , Seeds/embryology , Seeds/genetics , Arabidopsis/genetics , Base Sequence , Brassica napus/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Reporter , Models, Biological , Phosphoprotein Phosphatases/metabolism , Plants, Genetically Modified , Protein Phosphatase 2C , Staurosporine/pharmacology , Nicotiana/embryology , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Transcriptional Activation/drug effects
19.
J Vis Exp ; (26)2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19377440

ABSTRACT

The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film.


Subject(s)
In Situ Hybridization/methods , Picea/genetics , Plants/genetics , Trees/genetics
20.
Mitochondrion ; 8(1): 74-86, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18054525

ABSTRACT

Flower development in plants depends not only on a set of nuclear genes but also on the coordinate action of the mitochondrion. Certain mitochondrial genomes in combination with certain nuclear genomes lead to the expression of cytoplasmic male-sterility (CMS). Both mitochondrial genes that determine male-sterility and nuclear Restorer-of-fertility genes that suppress the male-sterile phenotype have been cloned. Lately, the interactions between mitochondrial and nuclear genes through retrograde signalling in CMS-systems have been dissected. Of special interest are the altered expression patterns of floral homeotic genes in certain CMS-systems. Here, we review the mitochondrial influence on flower development and give examples from CMS-systems developed in Brassica, Daucus carota, Nicotiana tabacum and Triticum aestivum.


Subject(s)
Flowers/growth & development , Genes, Plant/physiology , Mitochondria/physiology , Plant Infertility/genetics , Brassica/genetics , Daucus carota/genetics , Genes, Homeobox/physiology , Genome, Mitochondrial/physiology , Nicotiana/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...