Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Insect Mol Biol ; 31(1): 1-9, 2022 02.
Article in English | MEDLINE | ID: mdl-34418191

ABSTRACT

Social insects depend on communication to regulate social behaviour. This also applies to their larvae, which are commonly exposed to social interactions and can react to social stimulation. However, how social insect larvae sense their environment is not known. Using RNAseq, we characterized expression of sensory-related genes in larvae of the ant Formica fusca, upon exposure to two social environments: isolation without contact to other individuals, and stimulation via the presence of other developing individuals. Expression of key sensory-related genes was higher following social stimulation, and larvae expressed many of the same sensory-related genes as adult ants and larvae of other insects, including genes belonging to the major insect chemosensory gene families. Our study provides first insights into the molecular changes associated with social information perception in social insect larvae.


Subject(s)
Ants , Receptors, Odorant , Animals , Ants/genetics , Ants/metabolism , Gene Expression , Gene Expression Profiling , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Phylogeny , Receptors, Odorant/metabolism , Social Environment , Transcriptome
2.
Sci Rep ; 9(1): 406, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674960

ABSTRACT

Salmonids show a high degree of phenotypic plasticity that can differ among genotypes, and this variation is one of the major factors contributing to uncertainty in extrapolating laboratory-based risk assessment data to nature. Many studies have examined the relative growth and survival of transgenic and non-transgenic salmonids, and the results have been highly variable due to genotype × environment interactions. The relative survival of fast- and slow-growing strains can reverse depending on the environment, but it is not clear which specific environmental characteristics are driving these responses. To address this question, two experiments were designed where environmental conditions were varied to investigate the contribution of rearing density, food amount, food type, habitat complexity, and risk of predation on relative growth and survival of fast-growing transgenic and slow-growing wild-type coho salmon. The first experiment altered density (high vs. low) and food amount (high vs. low). Density impacted the relative growth of the genotypes, where transgenic fish grew more than non-transgenic fish in low density streams, regardless of food level. Density also affected survival, with high density causing increased mortality for both genotypes, but the mortality of transgenic relative to non-transgenic fish was lower within the high-density streams, regardless of food level. The second experiment altered habitat complexity (simple vs. complex), food type (artificial vs. natural), amount of food (normal vs. satiation), and risk of predation (present vs. absent). Results from this experiment showed that genotype affected growth and survival, but genotype effects were modulated by one or more environmental factors. The effect of genotype on survival was influenced by all examined environmental factors, such that no predictable trend in relative survival of transgenic versus non-transgenic fry emerged. This was primarily due to variations in survival of non-transgenic fish under different environmental conditions (non-transgenic fry had highest survival in hatchery conditions, and lowest survival in complex conditions with natural food fed at a normal level with or without predators). Transgenic fry survival was only significantly influenced by predator presence. The effects of genotype on mass and length were significantly modulated by food type only. Transgenic fry were able to gain a large size advantage over non-transgenic fish when fed artificial food under all habitat types. These experiments support the observations of dynamic responses in growth and survival depending on the environment, and demonstrate the challenge of applying laboratory-based experiments to risk assessment in nature.


Subject(s)
Animals, Genetically Modified , Ecosystem , Oncorhynchus kisutch , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Genotype , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/growth & development , Risk Assessment , Uncertainty
3.
Sci Adv ; 4(10): eaat3386, 2018 10.
Article in English | MEDLINE | ID: mdl-30345352

ABSTRACT

Antisense oligonucleotide (ASO) silencing of the expression of disease-associated genes is an attractive novel therapeutic approach, but treatments are limited by the ability to deliver ASOs to cells and tissues. Following systemic administration, ASOs preferentially accumulate in liver and kidney. Among the cell types refractory to ASO uptake is the pancreatic insulin-secreting ß-cell. Here, we show that conjugation of ASOs to a ligand of the glucagon-like peptide-1 receptor (GLP1R) can productively deliver ASO cargo to pancreatic ß-cells both in vitro and in vivo. Ligand-conjugated ASOs silenced target genes in pancreatic islets at doses that did not affect target gene expression in liver or other tissues, indicating enhanced tissue and cell type specificity. This finding has potential to broaden the use of ASO technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of ASOs to additional cell types.


Subject(s)
Drug Delivery Systems/methods , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin-Secreting Cells/drug effects , Oligonucleotides, Antisense/administration & dosage , Animals , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Silencing , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/genetics , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacokinetics , RNA, Long Noncoding/genetics
4.
Flow Turbul Combust ; 100(2): 417-436, 2018.
Article in English | MEDLINE | ID: mdl-30069140

ABSTRACT

The near-wall region of an unsteady turbulent pipe flow has been investigated experimentally using hot-film anemometry and two-component particle image velocimetry. The imposed unsteadiness has been pulsating, i.e., when a non-zero mean turbulent flow is perturbed by sinusoidal oscillations, and near-uniformly accelerating in which the mean flow ramped monotonically between two turbulent states. Previous studies of accelerating flows have shown that the time evolution between the two turbulent states occurs in three stages. The first stage is associated with a minimal response of the Reynolds shear stress and the ensemble-averaged mean flow evolves essentially akin to a laminar flow undergoing the same change in flow rate. During the second stage, the turbulence responds rapidly to the new flow conditions set by the acceleration and the laminar-like behavior rapidly disappears. During the final stage, the flow adapts to the conditions set by the final Reynolds number. In here, it is shown that the time-development of the ensemble-averaged wall shear stress and turbulence during the accelerating phase of a pulsating flow bears marked similarity to the first two stages of time-development exhibited by a near-uniformly accelerating flow. The stage-like time-development is observed even for a very low forcing frequency; ω+=ων/u¯τ2=0.00073 (or equivalently, ls+=2/ω+=52 ), at an amplitude of pulsation of 0.5. Some previous studies have considered the flow to be quasi-steady at ls+=52 ; however, the forcing amplitude has been smaller in those studies. The importance of the forcing amplitude is reinforced by the time-development of the ensemble-averaged turbulence field. For, the near-wall response of the Reynolds stresses showed a dependence on the amplitude of pulsation. Thus, it appears to exist a need to seek alternative similarity parameters, taking the amplitude of pulsation into account, if the response of different flow quantities in a pulsating flow are to be classified correctly.

5.
Mol Ecol ; 26(15): 4013-4026, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28503905

ABSTRACT

Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200-bp mitochondrial sequence. Our results show that 27 sampled nests contained parental-like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental-like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.


Subject(s)
Ants/genetics , Genetics, Population , Hybridization, Genetic , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Female , Finland , Gene Flow , Gene Pool , Genome, Insect , Haplotypes , Hybrid Vigor , Male , Microsatellite Repeats
6.
PLoS One ; 12(1): e0169991, 2017.
Article in English | MEDLINE | ID: mdl-28068416

ABSTRACT

Growth hormone (GH) transgenic fish have accelerated growth and could improve production efficiency in aquaculture. However, concern exists regarding potential environmental risks of GH transgenic fish should they escape rearing facilities. While environmental effects have been examined in some GH transgenic models, there is a lack of information on whether effects differ among different constructs or strains of transgenic fish. We compared growth and survival of wild-type coho salmon (Oncorhynchus kisutch) fry, a fast-growing GH transgenic strain containing a metallothionein promoter (TMT), and three lines/strains containing a reportedly weaker histone-3 promoter (TH3) in hatchery conditions and semi-natural stream tanks with varying levels of natural food and predators. Rank order of genotype size and survival differed with varying environmental conditions, both within and among experiments. Despite accelerated growth in hatchery conditions, TMT fry gained little or no growth enhancement in stream conditions, had enhanced survival when food was limiting, and inconsistent survival under other conditions. Rank growth was inconsistent in TH3 strains, with one strain having highest, and two strains having the lowest growth in stream conditions, although all TH3 strains had consistently poor survival. These studies demonstrate the importance of determining risk estimates for each unique transgenic model independent of other models.


Subject(s)
Fisheries , Oncorhynchus kisutch/growth & development , Oncorhynchus kisutch/genetics , Rivers , Animal Feed , Animals , Animals, Genetically Modified , British Columbia , Female , Genotype , Male , Predatory Behavior , Risk Assessment
7.
J Exp Biol ; 219(Pt 18): 2880-2887, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27401764

ABSTRACT

Thermal plasticity of cardiorespiratory function allows ectotherms like fish to cope with seasonal temperature changes and is critical for resilience to climate change. Yet, the chronic thermal effects on cardiovascular homeostatic reflexes in fish are little understood although this may have important implications for physiological performance and overall resilience to climate warming. We compared cardiac autonomic control and baroreflex regulation of heart rate in perch (Perca fluviatilis L.) from a reference area in the Baltic Sea at 18-19°C with conspecifics from the Biotest enclosure, a chronically heated ecosystem receiving warmed effluent water (24-25°C) from a nuclear power plant. Resting heart rate of Biotest fish displayed clear thermal compensation and was 58.3±2.3 beats min-1 compared with 52.4±2.6 beats min-1 in reference fish at their respective environmental temperatures (Q10=1.2). The thermally compensated heart rate of Biotest fish was a combined effect of elevated inhibitory cholinergic tone (105% in Biotest fish versus 70% in reference fish) and reduced intrinsic cardiac pacemaker rate. A barostatic response was evident in both groups, as pharmacologically induced increases and decreases in blood pressure resulted in atropine-sensitive bradycardia and tachycardia, respectively. Yet, the tachycardia in Biotest fish was significantly greater, presumably due to the larger scope for vagal release. Acclimation of Biotest fish to 18°C for 3 weeks abolished differences in intrinsic heart rate and autonomic tone, suggesting considerable short-term thermal plasticity of cardiovascular control in this species. The heightened hypotensive tachycardia in Biotest perch may represent an important mechanism of ectothermic vertebrates that safeguards tissue perfusion pressure when tissue oxygen demand is elevated by environmental warming.

8.
J Comp Physiol B ; 186(8): 1023-1031, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27318665

ABSTRACT

Environmental warming and acute stress increase cardiorespiratory activity in ectothermic animals like fish. While thermal acclimation can buffer the direct thermal effects on basal cardiorespiratory function during chronic warming, little is known about how acclimation affects stress-induced cardiorespiratory responses. We compared cardiovascular and haematological responses to chasing stress in cannulated wild European perch (Perca fluviatilis) from a reference area at natural temperature (16 °C) with perch from the 'Biotest enclosure'; an experimental system chronically warmed (22 °C) by effluents from a nuclear power plant. Routine blood pressure was similar, but Biotest perch had slightly higher resting heart rate (59.9 ± 2.8 vs 51.3 ± 2.9 beats min-1), although the Q 10 for heart rate was 1.3, indicating pronounced thermal compensation. Chasing stress caused hypertension and a delayed tachycardia in both groups, but the maximum heart rate increase was 2.5-fold greater in Biotest fish (43.3 ± 4.3 vs 16.9 ± 2.7 beats min-1). Moreover, the pulse pressure response after stress was greater in reference fish, possibly due to the less pronounced tachycardia or a greater ventricular pressure generating capacity and thermally mediated differences in aortic compliance. Baseline haematological status was also similar, but after chasing stress, the haematocrit was higher in Biotest fish due to exacerbated red blood cell swelling. This study highlights that while eurythermal fishes can greatly compensate routine cardiorespiratory functions through acclimation processes, stress-induced responses may still differ markedly. This knowledge is essential when utilising cardiorespiratory variables to quantify and compare stress responses across environmental temperatures, and to forecast energetic costs and physiological constraints in ectothermic animals under global warming.


Subject(s)
Heart Rate/physiology , Perches/physiology , Stress, Physiological/physiology , Acclimatization/physiology , Animals , Blood Pressure/physiology , Cardiovascular Physiological Phenomena , Fish Proteins/metabolism , Global Warming , Hematocrit , Hemoglobins/metabolism , Temperature
9.
Nat Commun ; 7: 11447, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27186890

ABSTRACT

Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate.


Subject(s)
Construction Materials , Global Warming , Perches/physiology , Plastics , Animals , Geography , Heart/physiology , Lung/physiology , Perches/growth & development , Rest
10.
Ecol Appl ; 26(1): 67-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27039510

ABSTRACT

Environmental conditions are known to affect phenotypic development in many organisms, making the characteristics of an animal reared under one set of conditions not always representative of animals reared under a different set of conditions. Previous results show that such plasticity can also affect the phenotypes and ecological interactions of different genotypes, including animals anthropogenically generated by genetic modification. To understand how plastic development can affect behavior in animals of different genotypes, we examined the feeding and risk-taking behavior in growth-enhanced transgenic coho salmon (with two- to threefold enhanced daily growth rates compared to wild type) under a range of conditions. When compared to wild-type siblings, we found clear effects of the rearing environment on feeding and risk-taking in transgenic animals and noted that in some cases, this environmental effect was stronger than the effects of the genetic modification. Generally, transgenic fish, regardless of rearing conditions, behaved similar to wild-type fish reared under natural-like conditions. Instead, the more unusual phenotype was associated with wild-type fish reared under hatchery conditions, which possessed an extreme risk averse phenotype compared to the same strain reared in naturalized conditions. Thus, the relative performance of genotypes from one environment (e.g., laboratory) may not always accurately reflect ecological interactions as would occur in a different environment (e.g., nature). Further, when assessing risks of genetically modified organisms, it is important to understand how the environment affects phenotypic development, which in turn may variably influence consequences to ecosystem components across different conditions found in the complexity of nature.


Subject(s)
Animals, Genetically Modified , Animals, Wild , Escape Reaction , Feeding Behavior , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/physiology , Animals
11.
PLoS One ; 11(2): e0148687, 2016.
Article in English | MEDLINE | ID: mdl-26848575

ABSTRACT

Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains.


Subject(s)
Ecology , Genotype , Oncorhynchus kisutch , Phenotype , Animals , Animals, Genetically Modified , Ecosystem
12.
J Chromatogr A ; 1429: 265-76, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26755412

ABSTRACT

Freshwater blooms of cyanobacteria (blue-green algae) in source waters are generally composed of several different strains with the capability to produce a variety of toxins. The major exposure routes for humans are direct contact with recreational waters and ingestion of drinking water not efficiently treated. The ultra high pressure liquid chromatography tandem mass spectrometry based analytical method presented here allows simultaneous analysis of 22 cyanotoxins from different toxin groups, including anatoxins, cylindrospermopsins, nodularin and microcystins in raw water and drinking water. The use of reference standards enables correct identification of toxins as well as precision of the quantification and due to matrix effects, recovery correction is required. The multi-toxin group method presented here, does not compromise sensitivity, despite the large number of analytes. The limit of quantification was set to 0.1 µg/L for 75% of the cyanotoxins in drinking water and 0.5 µg/L for all cyanotoxins in raw water, which is compliant with the WHO guidance value for microcystin-LR. The matrix effects experienced during analysis were reasonable for most analytes, considering the large volume injected into the mass spectrometer. The time of analysis, including lysing of cell bound toxins, is less than three hours. Furthermore, the method was tested in Swedish source waters and infiltration ponds resulting in evidence of presence of anatoxin, homo-anatoxin, cylindrospermopsin and several variants of microcystins for the first time in Sweden, proving its usefulness.


Subject(s)
Bacterial Toxins/analysis , Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Drinking Water/chemistry , Fresh Water/chemistry , Tandem Mass Spectrometry , Alkaloids , Chemistry Techniques, Analytical/instrumentation , Cyanobacteria/chemistry , Cyanobacteria Toxins , Humans , Marine Toxins , Microcystins/analysis , Sweden , Tropanes/analysis , Uracil/analogs & derivatives , Uracil/analysis
13.
Ecol Appl ; 25(6): 1618-29, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26552269

ABSTRACT

Concerns with transgenic animals include the potential ecological risks associated with release or escape to the natural environment, and a critical requirement for assessment of ecological effects is the ability to distinguish transgenic animals from wild type. Here, we explore geometric morphometrics (GeoM) and human expertise to distinguish growth-hormone-transgenic coho salmon (Oncorhynchus kisutch) specimens from wild type. First, we simulated an escape of 3-month-old hatchery-reared wild-type and transgenic fish to an artificial stream, and recaptured them at the time of seaward migration at an age of 13 months. Second, we reared fish in the stream from first-feeding fry until an age of 13 months, thereby simulating fish arising from a successful spawn in the wild of an escaped hatchery-reared transgenic fish. All fish were then assessed from 'photographs by visual identification (VID) by local staff and by GeoM based on 13 morphological landmarks. A leave-one-out discriminant analysis of GeoM data had on average 86% (72-100% for individual groups) accuracy in assigning the correct genotypes, whereas the human experts were correct, on average, in only 49% of cases (range of 18-100% for individual fish groups). However, serious errors (i.e., classifying transgenic specimens as wild type) occurred for 7% (GeoM) and 67% (VID) of transgenic fish, and all of these incorrect assignments arose with fish reared in the stream from the first-feeding stage. The results show that we presently lack the skills of visually distinguishing transgenic coho salmon from wild type with a high level of accuracy, but that further development-of GeoM methods could be useful in identifying second-generation,fish from nature as a nonmolecular approach.


Subject(s)
Growth Hormone/genetics , Introduced Species , Oncorhynchus kisutch/genetics , Oncorhynchus kisutch/physiology , Animals , Animals, Genetically Modified , Discriminant Analysis , Ecosystem , Environmental Monitoring/methods , Genotype , Models, Biological
14.
J Fish Biol ; 87(5): 1234-47, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26440307

ABSTRACT

The consequences of elevated temperature on body shape were investigated by comparing European perch Perca fluviatilis from the Forsmark area of the Baltic Sea to P. fluviatilis from a nearby Biotest enclosure. The Biotest is a man-made enclosure within the Baltic Sea that has received warm water from a nuclear power plant since 1980, resulting in temperatures that are elevated 5-10 °C relative to the surrounding Baltic Sea. Sampled fish ranged from young-of-the-year to 14 years. Geometric morphometrics and multivariate statistical analysis revealed significant morphological differences between individuals of P. fluviatilis from these two habitats. Most importantly, relative shape changed with size, with small individuals of P. fluviatilis from Biotest being characterized by a deeper body shape and a larger caudal peduncle than the smaller Baltic individuals. In large specimens, smaller differences were found with Biotest individuals being more slender than Baltic individuals. These results show that, in order to have a full understanding of the biological effects of elevated temperatures, studies that cover the entire size range of organisms will be important. Apart from the direct influence of temperature on growth rate and body shape, other ecological factors affected by temperature are discussed as possible contributors to the observed differences between the two populations.


Subject(s)
Global Warming , Hot Temperature , Perches/anatomy & histology , Perches/growth & development , Animals , Baltic States , Ecosystem , Female , Male , Temperature , Water
15.
PLoS One ; 10(6): e0128860, 2015.
Article in English | MEDLINE | ID: mdl-26035300

ABSTRACT

Global climate change is expected to have major effects on host-parasite dynamics, with potentially enormous consequences for entire ecosystems. To develop an accurate prognostic framework, theoretical models must be supported by empirical research. We investigated potential changes in host-parasite dynamics between a fish parasite, the eyefluke Diplostomum baeri, and an intermediate host, the European perch Perca fluviatilis, in a large-scale semi-enclosed area in the Baltic Sea, the Biotest Lake, which since 1980 receives heated water from a nuclear power plant. Two sample screenings, in two consecutive years, showed that fish from the warmer Biotest Lake were now less parasitized than fish from the Baltic Sea. These results are contrasting previous screenings performed six years after the temperature change, which showed the inverse situation. An experimental infection, by which perch from both populations were exposed to D. baeri from the Baltic Sea, revealed that perch from the Baltic Sea were successfully infected, while Biotest fish were not. These findings suggest that the elevated temperature may have resulted, among other outcomes, in an extremely rapid evolutionary change through which fish from the experimental Biotest Lake have gained resistance to the parasite. Our results confirm the need to account for both rapid evolutionary adaptation and biotic interactions in predictive models, and highlight the importance of empirical research in order to validate future projections.


Subject(s)
Climate Change , Host-Parasite Interactions , Perches/parasitology , Temperature , Trematoda/physiology , Animals , Biological Evolution , Oceans and Seas , Parasite Load , Perches/anatomy & histology
16.
PLoS One ; 10(3): e0120173, 2015.
Article in English | MEDLINE | ID: mdl-25807001

ABSTRACT

There is persistent commercial interest in the use of growth modified fishes for shortening production cycles and increasing overall food production, but there is concern over the potential impact that transgenic fishes might have if ever released into nature. To explore the ecological consequences of transgenic fish, we performed two experiments in which the early growth and survival of growth-hormone transgenic rainbow trout (Oncorhynchus mykiss) were assessed in naturalized stream mesocosms that either contained predators or were predator-free. We paid special attention to the survival bottleneck that occurs during the early life-history of salmonids, and conducted experiments at two age classes (first-feeding fry and 60 days post-first-feeding) that lie on either side of the bottleneck. In the late summer, the first-feeding transgenic trout could not match the growth potential of their wild-type siblings when reared in a hydrodynamically complex and oligotrophic environment, irrespective of predation pressure. Furthermore, overall survival of transgenic fry was lower than in wild-type (transgenic = 30% without predators, 8% with predators; wild-type = 81% without predators, 31% with predators). In the experiment with 60-day old fry, we explored the effects of the transgene in different genetic backgrounds (wild versus domesticated). We found no difference in overwinter survival but significantly higher growth by transgenic trout, irrespective of genetic background. We conclude that the high mortality of GH-transgenic trout during first-feeding reflects an inability to sustain the basic metabolic requirements necessary for life in complex, stream environments. However, when older, GH-transgenic fish display a competitive advantage over wild-type fry, and show greater growth and equal survival as wild-type. These results demonstrate how developmental age and time of year can influence the response of genotypes to environmental conditions. We therefore urge caution when extrapolating the results of GH-transgenesis risk assessment studies across multiple life-history or developmental stages.


Subject(s)
Growth Hormone/genetics , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/physiology , Ecosystem , Female , Gene Transfer Techniques , Genotype , Growth Hormone/metabolism , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/physiology , Ovum/growth & development , Ovum/metabolism , Predatory Behavior/physiology
17.
Biol Lett ; 10(11): 20140805, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25392316

ABSTRACT

Inbred individuals and populations are predicted to suffer from inbreeding depression, especially in times of stress. Under natural conditions, organisms are exposed to more than one stressor at any one time, highlighting the importance of stress resistance traits. We studied how inbreeding- and immunity-related traits are correlated under different dietary conditions in the ant Formica exsecta. Its natural diet varies in the amount and nature of plant secondary compounds and the level of free radicals, all of which require detoxification to maintain organismal homeostasis. We found that inbreeding decreased general antibacterial activity under dietary stress, suggesting inbreeding-related physiological trade-offs.


Subject(s)
Ants/genetics , Ants/immunology , Gene Expression Regulation , Immunity, Innate , Inbreeding , Animals , Ants/microbiology , Diet , Free Radicals/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Longevity , Oxidative Stress , Stress, Physiological
18.
PLoS One ; 8(5): e63287, 2013.
Article in English | MEDLINE | ID: mdl-23658820

ABSTRACT

Density-dependence is a major ecological mechanism that is known to limit individual growth. To examine if compensatory growth (unusually rapid growth following a period of imposed slow growth) in nature is density-dependent, one-year-old brown trout (Salmo trutta L.) were first starved in the laboratory, and then released back into their natural stream, either at natural or at experimentally increased population density. The experimental trout were captured three times over a one-year period. We found no differences in growth, within the first month after release (May-June), between the starved fish and the control group (i.e. no evidence of compensation). During the summer however (July-September), the starved fish grew more than the control group (i.e. compensation), and the starved fish released into the stream at a higher density, grew less than those released at a natural density, both in terms of weight and length (i.e. density-dependent compensation). Over the winter (October-April), there were no effects of either starvation or density on weight and length growth. After the winter, starved fish released at either density had caught up with control fish in body size, but recapture rates (proxy for survival) did not indicate any costs of compensation. Our results suggest that compensatory growth in nature can be density-dependent. Thus, this is the first study to demonstrate the presence of ecological restrictions on the compensatory growth response in free-ranging animals.


Subject(s)
Body Size/physiology , Trout/growth & development , Animals , Ecosystem , Food Deprivation , Population Density , Rivers , Seasons
19.
J Fish Biol ; 83(5): 1183-96, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24580661

ABSTRACT

The competitive ability and habitat selection of juvenile all-fish GH-transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics, in the absence and presence of predation risk, under different food distributions, were compared. Unequal-competitor ideal-free-distribution analysis showed that a larger proportion of transgenic C. carpio fed within the system, although they were not overrepresented at a higher-quantity food source. Moreover, the analysis showed that transgenic C. carpio maintained a faster growth rate, and were more willing to risk exposure to a predator when foraging, thereby supporting the hypothesis that predation selects against maximal growth rates by removing individuals that display increased foraging effort. Without compensatory behaviours that could mitigate the effects of predation risk, the escaped or released transgenic C. carpio with high-gain and high-risk performance would grow well but probably suffer high predation mortality in nature.


Subject(s)
Animals, Genetically Modified/physiology , Behavior, Animal , Carps/physiology , Feeding Behavior , Risk-Taking , Animals , Animals, Genetically Modified/growth & development , Carps/growth & development , Competitive Behavior , Ecosystem , Female , Male , Mortality
20.
J Fish Biol ; 81(3): 987-1002, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22880732

ABSTRACT

Transgenic and wild-type individual coho salmon Oncorhynchus kisutch were reared in hatchery and near-natural stream conditions and their brain and structure sizes were determined. Animals reared in the hatchery grew larger and developed larger brains, both absolutely and when controlling for body size. In both environments, transgenics developed relatively smaller brains than wild types. Further, the volume of the optic tectum of both genotypes was larger in the hatchery animals and the cerebellum of transgenics was smaller when reared in near-natural streams. Finally, wild types developed a markedly smaller telencephalon under hatchery conditions. It is concluded that, apart from the environment, genetic factors that modulate somatic growth rate also have a strong influence on brain size and structure.


Subject(s)
Brain/anatomy & histology , Environment , Oncorhynchus kisutch/anatomy & histology , Oncorhynchus kisutch/genetics , Animals , Animals, Genetically Modified , Brain/growth & development , Cerebellum/anatomy & histology , Cerebellum/growth & development , Oncorhynchus kisutch/growth & development , Rivers , Superior Colliculi/anatomy & histology , Superior Colliculi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...