Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Bioenerg ; 1861(11): 148260, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32679044

ABSTRACT

A comparative analysis of functional characteristics of the grapevine leaf photosynthetic apparatus (LPA) and corticular photosynthetic apparatus (CPA) in chlorenchyma tissues of first-year lignified vine was performed. Obtained results demonstrate significant differences between the functional properties of the CPA and the LPA. CPA contains an increased proportion (about 2/3) of QB-non-reducing centers of photosystem II (PSII) that is confirmed by elevated O-J phase in fluorescence kinetics, high PSIIß content, and slower QA-• reoxidation. CPA and LPA use different strategies to utilize absorbed light energy and to protect itself against excessive light. CPA dissipates a significant proportion of absorbed light energy as heat (regulated and non-regulated dissipation), and only a smaller part of the excitation energy is used in the dark stages of photosynthesis. The rate constant of photoinhibition and fluorescence quenching due to photoinhibition in CPA is almost three times higher than in LPA, while high-energy state fluorescence quenching value is twice lower. The saturation of vine chlorenchyma tissue with water increases the CPA tolerance to photoinhibition and promotes the ability to restore the photosynthetic activity after photoinhibition. The electron microscopy analysis confirmed the presence of intact plastids in vine chlorenchyma tissue, the interior space of plastids is filled with large starch grains while bands of stacked thylakoid membranes are mainly localized on the periphery. Analyzes showed that corticular plastids are specialized organelles combining features of chloroplasts, amyloplasts and gerontoplasts. Distinct structural organization of photosynthetic membranes and microenvironment predetermine distinctive functional properties of CPA.


Subject(s)
Chlorophyll/metabolism , Chloroplasts/metabolism , Fluorescence , Photosynthesis , Photosystem II Protein Complex/metabolism , Plant Leaves/physiology , Vitis/physiology , Electron Transport , Light
SELECTION OF CITATIONS
SEARCH DETAIL