Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117001, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936194

ABSTRACT

BACKGROUND: 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH: The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS: Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.

2.
J Asian Nat Prod Res ; 25(12): 1133-1154, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37066495

ABSTRACT

COVID-19, caused by SARS-CoV-2, is spreading worldwide, regardless of different continents, increasing the death toll to almost five million, with more than 300 million reported cases. Researchers have been fighting the greatest threats to human civilization. This report provides a glimpse of ongoing small-molecule research on COVID-19 drugs to save millions of lives, which may provide researchers with a better understanding of rigorously investigated therapeutic agents. This report emphasizes the chemical structures and mechanisms of activity along with drug target information for several small molecules, including marketable drugs and agents under investigation.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Drug Development , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...