Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 119: 572-581, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30059741

ABSTRACT

Esterases are an important group of biocatalysts for synthetic organic chemistry. Functional metagenomics allows discovery of novel biocatalysts by providing access to the gene pool of the microbial community of a habitat. Two metagenomic libraries representing the gene pool of sea sediment and hot spring microbial mat were constructed. Functional screening of these libraries resulted in the isolation of total 8 clones with tributyrin hydrolytic activity. Sequence analysis revealed 10 putative lipolytic proteins with 42-99% homology to the protein sequences in the databases, nine of which represented six known esterase families. Four of the encoded proteins represented Family V and amongst others, one each represented the Family VIII, pectin acetylesterase, enterobactin esterase, G-D-S-L family and OsmC domain containing esterase. One unusual lipolytic protein possessed poly-(3-hydroxybutyrate) depolymerase domain fused to lipase/esterase domain. Two phylogenetically related esterases (MLC3 and SLC5) belonging to family V were expressed and purified to homogeneity. The enzymes exhibited environment-adapted temperature optimum and thermostability. MLC3 was able to stereoselectively hydrolyze R-methyl mandelate to produce R-mandelic acid, an important chiral building block, which suggests MLC3 has potential commercial application.


Subject(s)
Esterases/metabolism , Geologic Sediments/microbiology , Hot Springs/microbiology , Metagenome , Enzyme Stability , Esterases/chemistry , Phylogeny , Sequence Alignment , Stereoisomerism , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...