Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 310: 1086-1090, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269982

ABSTRACT

Clinical trial enrollment is impeded by the significant time burden placed on research coordinators screening eligible patients. With 50,000 new cancer cases every year, the Veterans Health Administration (VHA) has made increased access for Veterans to high-quality clinical trials a priority. To aid in this effort, we worked with research coordinators to build the MPACT (Matching Patients to Accelerate Clinical Trials) platform with a goal of improving efficiency in the screening process. MPACT supports both a trial prescreening workflow and a screening workflow, employing Natural Language Processing and Data Science methods to produce reliable phenotypes of trial eligibility criteria. MPACT also has a functionality to track a patient's eligibility status over time. Qualitative feedback has been promising with users reporting a reduction in time spent on identifying eligible patients.


Subject(s)
Neoplasms , Technology , Humans , Workflow , Data Science , Eligibility Determination , Neoplasms/diagnosis , Neoplasms/therapy
2.
Article in English | MEDLINE | ID: mdl-38050021

ABSTRACT

Veterans are at an increased risk for prostate cancer, a disease with extraordinary clinical and molecular heterogeneity, compared with the general population. However, little is known about the underlying molecular heterogeneity within the veteran population and its impact on patient management and treatment. Using clinical and targeted tumor sequencing data from the National Veterans Affairs health system, we conducted a retrospective cohort study on 45 patients with advanced prostate cancer in the Veterans Precision Oncology Data Commons (VPODC), most of whom were metastatic castration-resistant. We characterized the mutational burden in this cohort and conducted unsupervised clustering analysis to stratify patients by molecular alterations. Veterans with prostate cancer exhibited a mutational landscape broadly similar to prior studies, including KMT2A and NOTCH1 mutations associated with neuroendocrine prostate cancer phenotype, previously reported to be enriched in veterans. We also identified several potential novel mutations in PTEN, MSH6, VHL, SMO, and ABL1 Hierarchical clustering analysis revealed two subgroups containing therapeutically targetable molecular features with novel mutational signatures distinct from those reported in the Catalogue of Somatic Mutations in Cancer database. The clustering approach presented in this study can potentially be used to clinically stratify patients based on their distinct mutational profiles and identify actionable somatic mutations for precision oncology.


Subject(s)
Prostatic Neoplasms , Veterans , Male , Humans , Retrospective Studies , Precision Medicine , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Medical Oncology , Mutation
4.
Patterns (N Y) ; 1(6): 100083, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-33205130

ABSTRACT

The Veterans Affairs Precision Oncology Data Repository (VA-PODR) is a large, nationwide repository of de-identified data on patients diagnosed with cancer at the Department of Veterans Affairs (VA). Data include longitudinal clinical data from the VA's nationwide electronic health record system and the VA Central Cancer Registry, targeted tumor sequencing data, and medical imaging data including computed tomography (CT) scans and pathology slides. A subset of the repository is available at the Genomic Data Commons (GDC) and The Cancer Imaging Archive (TCIA), and the full repository is available through the Veterans Precision Oncology Data Commons (VPODC). By releasing this de-identified dataset, we aim to advance Veterans' health care through enabling translational research on the Veteran population by a wide variety of researchers.

5.
J Am Med Inform Assoc ; 27(11): 1716-1720, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33067628

ABSTRACT

OBJECTIVE: Reducing risk of coronavirus disease 2019 (COVID-19) infection among healthcare personnel requires a robust occupational health response involving multiple disciplines. We describe a flexible informatics solution to enable such coordination, and we make it available as open-source software. MATERIALS AND METHODS: We developed a stand-alone application that integrates data from several sources, including electronic health record data and data captured outside the electronic health record. RESULTS: The application facilitates workflows from different hospital departments, including Occupational Health and Infection Control, and has been used extensively. As of June 2020, 4629 employees and 7768 patients and have been added for tracking by the application, and the application has been accessed over 46 000 times. DISCUSSION: Data captured by the application provides both a historical and real-time view into the operational impact of COVID-19 within the hospital, enabling aggregate and patient-level reporting to support identification of new cases, contact tracing, outbreak investigations, and employee workforce management. CONCLUSIONS: We have developed an open-source application that facilitates communication and workflow across multiple disciplines to manage hospital employees impacted by the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/transmission , Data Management , Health Personnel , Occupational Health , Patient Identification Systems/methods , Pneumonia, Viral/transmission , Software , Workflow , Boston , COVID-19 , Disease Outbreaks , Hospitals, Veterans , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pandemics , Systems Integration , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...