Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888143

ABSTRACT

A Pd-functionalized hydrogen gas sensor was fabricated on an AlGaN/GaN-on-Si heterostructure platform. The AlGaN layer under the Pd catalyst area was partially recessed by plasma etching, which resulted in a low standby current level enhancing the sensor response. Sensor stability and power consumption depending on operation conditions were carefully investigated using two different bias modes: constant voltage bias mode and constant current bias mode. From the stability point of view, high voltage operation is better than low voltage operation for the constant voltage mode of operation, whereas low current operation is preferred over high current operation for the constant current mode of operation. That is, stable operation with lower standby power consumption can be achieved with the constant current bias operation. The fabricated AlGaN/GaN-on-Si hydrogen sensor exhibited excellent sensing characteristics; a response of 120% with a response time of < 0.4 s at a bias current density of 1 mA/mm at 200 °C. The standby power consumption was only 0.54 W/cm2 for a sensing catalyst area of 100 × 24 µm2.

2.
Sensors (Basel) ; 18(9)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150581

ABSTRACT

Recently, many automobiles adopt radar sensors to support advanced driver assistance system (ADAS) functions. As the number of vehicles with radar systems increases the probability of radar signal interference and the accompanying ghost target problems become serious. In this paper, we propose a novel algorithm where we deploy per-vehicle chirp sequence in a frequency modulated continuous wave (FMCW) radar to mitigate the vehicle-to-vehicle radar interference. We devise a chirp sequence set so that the slope of each vehicle's chirp sequence does not overlap within the set. By assigning one of the chirp sequences to each vehicle, we mitigate the interference from the radar signals transmitted by the neighboring vehicles. We confirm the performance of the proposed method stochastically by computer simulation. The simulation results show that the detection and false alarm performance is improved significantly by the proposed method.

3.
Sensors (Basel) ; 18(3)2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29510559

ABSTRACT

We performed numerical analysis and design parameter optimization of a silicon-based grating waveguide refractive index (RI) sensor. The performance of the grating waveguide RI sensor was determined by the full-width at half-maximum (FWHM) and the shift in the resonance wavelength in the transmission spectrum. The transmission extinction, a major figure-of-merit of an RI sensor that reflects both FWHM and resonance shift performance, could be significantly improved by the proper determination of three major grating waveguide parameters: duty ratio, grating period, and etching depth. We analyzed the transmission characteristics of the grating waveguide under various design parameter conditions using a finite-difference time domain method. We achieved a transmission extinction improvement of >26 dB under a given bioenvironmental target change by the proper choice of the design procedure and parameters. This design procedure and choice of appropriate parameters would enable the widespread application of silicon-based grating waveguide in high-performance RI biochemical sensor.

4.
Appl Opt ; 55(29): 8301-8307, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27828079

ABSTRACT

This novel vertically and horizontally symmetric slotted-sector design aims to realize an angle- and polarization-insensitive metamaterial absorber. The unit-cell symmetries achieve polarization insensitivity, while an optimized slotted-sector inner angle enables angle insensitivity. Because the absorptivity of a metamaterial absorber depends on the incident angle and polarization, many researchers have studied angle- and polarization-insensitive unit cells. In this work, a novel vertically and horizontally symmetric slotted sector is proposed in order to realize an angle- and polarization-insensitive metamaterial absorber. The absorber performance is demonstrated with full-wave simulation and measurements. Angular sensitivity is studied for different slotted-sector inner angles. For an 85° inner angle, the simulated absorptivity exceeds 90% and the frequency variation is less than 1.2% up to 70° incidence. The measured absorptivity at 10.34 GHz is close to 98.5% for all polarization angles at normal incidence. As the incidence angle varies from 0° to 70°, the measured absorptivity at 10.34 GHz remains above 90% in the transverse electric mode.

5.
Sensors (Basel) ; 16(6)2016 Jun 18.
Article in English | MEDLINE | ID: mdl-27322286

ABSTRACT

We numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer. Our characterization includes the effective RI change caused by the thickness, functional volume ratio, and functional strength of the hydrogel layer. The results confirm the feasibility of, and set design rules for, hydrogel-assisted silicon-based grating waveguides.

6.
Opt Express ; 16(9): 6609-18, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18545364

ABSTRACT

By using strong optical injection locking, we report resonance frequency enhancement in excess of 100 GHz in semiconductor lasers. We demonstrate this enhancement in both distributed feedback (DFB) lasers and vertical-cavity surface-emitting lasers (VCSELs), showing the broad applicability of the technique and that the coupling Q is the figure-of-merit for resonance frequency enhancement. We have also identified the key factors that cause low-frequency roll-off in injection-locked lasers. By increasing the slave laser's DC current bias, we have achieved a record intrinsic 3-dB bandwidth of 80 GHz in VCSELs.


Subject(s)
Lasers, Semiconductor , Optics and Photonics
7.
Opt Lett ; 32(23): 3373-5, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18059937

ABSTRACT

It has been shown that strong optical injection locking can significantly enhance the resonance frequency of semiconductor lasers. In this Letter, we describe the trade-off between the maximum resonance frequency enhancement and the quality factor (Q) of the lossless laser cavity and show that the time-bandwidth product (product of photon lifetime and maximum resonance frequency) is equal to one half the square root of the external power injection ratio. The theoretical model agrees well with our experimental data.

8.
Opt Express ; 15(22): 14810-6, 2007 Oct 29.
Article in English | MEDLINE | ID: mdl-19550761

ABSTRACT

We demonstrate a novel cascaded configuration of optically injection-locked (COIL) VCSELs, which enables a wide and tailorable direct modulation bandwidth. Up to 66 GHz bandwidth is achieved using VCSELs with an original, free-running 10 GHz bandwidth. Different configurations of cascading are discussed in detail with the focus on optimizing the modulation bandwidth. We also discuss scaling capability of this technique to achieve tailorable modulation response.

SELECTION OF CITATIONS
SEARCH DETAIL
...