Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38507654

ABSTRACT

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Subject(s)
Cell Hypoxia , Glucose Transporter Type 1 , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Proto-Oncogene Proteins c-kit , Signal Transduction , Stem Cell Factor , Animals , Humans , Stem Cell Factor/metabolism , Stem Cell Factor/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Endothelial Cells/metabolism , Endothelial Cells/pathology , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Retinal Neovascularization/genetics , Mice , Neovascularization, Physiologic , Cells, Cultured , Disease Models, Animal , Glucose/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338982

ABSTRACT

We had previously investigated the expression and functional role of C-X-C Motif Chemokine Ligand 12 (CXCL12) during the hair cycle progression. CXCL12 was highly expressed in stromal cells such as dermal fibroblasts (DFs) and inhibition of CXCL12 increased hair growth. Therefore, we further investigated whether a CXCL12 neutralizing antibody (αCXCL12) is effective for androgenic alopecia (AGA) and alopecia areata (AA) and studied the underlying molecular mechanism for treating these diseases. In the AGA model, CXCL12 is highly expressed in DFs. Subcutaneous (s.c.) injection of αCXCL12 significantly induced hair growth in AGA mice, and treatment with αCXCL12 attenuated the androgen-induced hair damage in hair organ culture. Androgens increased the secretion of CXCL12 from DFs through the androgen receptor (AR). Secreted CXCL12 from DFs increased the expression of the AR and C-X-C Motif Chemokine Receptor 4 (CXCR4) in dermal papilla cells (DPCs), which induced hair loss in AGA. Likewise, CXCL12 expression is increased in AA mice, while s.c. injection of αCXCL12 significantly inhibited hair loss in AA mice and reduced the number of CD8+, MHC-I+, and MHC-II+ cells in the skin. In addition, injection of αCXCL12 also prevented the onset of AA and reduced the number of CD8+ cells. Interferon-γ (IFNγ) treatment increased the secretion of CXCL12 from DFs through the signal transducer and activator of transcription 3 (STAT3) pathway, and αCXCL12 treatment protected the hair follicle from IFNγ in hair organ culture. Collectively, these results indicate that CXCL12 is involved in the progression of AGA and AA and antibody therapy for CXCL12 is promising for hair loss treatment.


Subject(s)
Alopecia Areata , Antibodies, Neutralizing , Animals , Mice , Alopecia/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/metabolism , Androgens/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/metabolism , Hair , Hair Follicle/metabolism , Skin/metabolism , Chemokine CXCL12/immunology
3.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395283

ABSTRACT

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Microspheres , Chitosan/pharmacology , Polyglycolic Acid/pharmacology , Lactic Acid/pharmacology , Glycols , Delayed-Action Preparations/pharmacology , Cells, Cultured , Cell Differentiation , Chondrogenesis
4.
Curr Pharm Biotechnol ; 25(4): 468-476, 2024.
Article in English | MEDLINE | ID: mdl-37317921

ABSTRACT

Background: Human skin is exposed daily to oxidative stress factors such as UV light, chemical pollutants, and invading organisms. Reactive oxygen species (ROS) are intermediate molecules that cause cellular oxidative stress. In order to survive in an oxygen-rich environment, all aerobic organisms, including mammals, have evolved enzymatic and non-enzymatic defence systems. The interruptins from an edible fern Cyclosorus terminans possess antioxidative properties and can scavenge intracellular ROS in adipose-derived stem cells.

Objectives: This study aimed to evaluate the antioxidative efficacy of interruptins A, B, and C in cultured human dermal fibroblasts (HDFs) and epidermal keratinocytes (HEKs). Moreover, the anti-photooxidative activity of interruptins in ultraviolet (UV)-exposed skin cells was investigated.

Methods: The intracellular ROS scavenging capacity of interruptins in skin cells was measured by flow cytometry. Their induction effects on gene expression of the endogenous antioxidant enzymes was monitored using real-time polymerase chain reaction.

Results: Interruptins A and B, but not interruptin C, were highly effective in ROS scavenging, particularly in HDFs. Interruptins A and B upregulated gene expression of superoxide dismutase (SOD)1, SOD2, catalase (CAT), and glutathione peroxidase (GPx) in HEKs, but they only induced SOD1, SOD2, and GPx gene expression in HDFs. Additionally, interruptins A and B efficiently suppressed UVA- and UVB-induced ROS generation in both HEKs and HDFs.

Conclusion: The results suggest that these naturally occurring interruptins A and B are potent natural antioxidants and therefore may have the potential in the future of inclusion in antiaging cosmeceutical products.

.


Subject(s)
Antioxidants , Ferns , Animals , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Ferns/metabolism , Skin , Oxidative Stress , Fibroblasts , Ultraviolet Rays , Superoxide Dismutase/metabolism , Mammals/metabolism
5.
Cell Prolif ; 57(3): e13562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37991164

ABSTRACT

Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.


Subject(s)
Alopecia Areata , Animals , Humans , Mice , Alopecia Areata/therapy , Biological Transport , Culture Media, Conditioned/pharmacology , Intercellular Signaling Peptides and Proteins , Stem Cells
6.
Biomed Pharmacother ; 161: 114509, 2023 May.
Article in English | MEDLINE | ID: mdl-37002580

ABSTRACT

GPR40 is found primarily in pancreatic ß cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.


Subject(s)
Hair , PPAR gamma , Mice , Animals , PPAR gamma/metabolism , Organ Culture Techniques
8.
Plants (Basel) ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903879

ABSTRACT

Castanea crenata (Fagaceae) is a species of chestnut tree that is endemic to the Republic of Korea and Japan. While its kernels are consumed, chestnut by-products such as shells and burs, which account for 10-15% of the total weight, are discarded as waste. Phytochemical and biological studies have been carried out to eliminate this waste and develop high-value products from its by-products. In this study, five new compounds (1-2, 6-8) along with seven known compounds were isolated from the shell of C. crenata. This is the first study to report diterpenes from the shell of C. crenata. Comprehensive spectroscopic data including 1D, 2D NMR, and CD spectroscopy were used to determine the compound structures. All isolated compounds were examined for their ability to stimulate dermal papilla cell proliferation using a CCK-8 assay. In particular, 6ß,7ß,16α,17-Tetrahydroxy-ent-kauranoic acid, isopentyl-α-L-arabinofuranosyl-(1→6)-ß-D-glucopyranoside, and ellagic acid exhibited the most potent proliferation activity of all.

9.
Biomed Pharmacother ; 159: 114303, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706635

ABSTRACT

Human embryonic stem cell (hES)-derived mesenchymal stem cells (-MSCs) are an unlimited source of MSCs. The hair growth-promoting effects of diverse MSCs have been reported, but not that of hES-MSCs. In the present study, we investigated the hair growth-promoting effects of hES-MSCs and their underlying mechanisms. hES-MSCs or conditioned medium of hES-MSCs exhibited hair-growth effects, which increased the length of mouse vibrissae and human hair follicles. hES-MSCs accelerated the telogen-to-anagen transition in C3H mice and were more effective than adipose-derived stem cells. We further examined whether hypoxia could enhance the hair-growth promoting effects of hES-MSCs. The injection of hES-MSCs or conditioned medium (Hyp-CM) cultured under hypoxia (2% O2) enhanced the telogen-to-anagen transition in C3H mice. Additionally, Hyp-CM increased the length of mouse vibrissae, human hair follicles, and the proliferation of human dermal papilla and outer root sheath cells. Moreover, fibroblast growth factor 7, interleukin 12B, and teratocarcinoma-derived growth factor 1 were upregulated under hypoxia, and the co-treatment with these three proteins increased the hair length and induced telogen-to-anagen transition. Hypoxia increased reactive oxygen species (ROS) production, and ROS scavenging attenuated the secretion of growth factors. NADPH oxidase 4 was primarily expressed in hES-MSCs and generated ROS under hypoxia. Collectively, our results suggest that hES-MSCs exhibit hair-growth effects, which is enhanced by hypoxia.


Subject(s)
Hair Follicle , Mesenchymal Stem Cells , Humans , Animals , Mice , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Mice, Inbred C3H , Cell Proliferation , Hair Follicle/metabolism , Mesenchymal Stem Cells/metabolism , Embryonic Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Hypoxia/metabolism , Cells, Cultured
10.
Biomed Pharmacother ; 157: 113988, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370520

ABSTRACT

We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.


Subject(s)
Hair Follicle , Hair , Humans , Cells, Cultured , Cell- and Tissue-Based Therapy , Alopecia/therapy , Alopecia/metabolism
11.
Int J Mol Sci ; 23(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-36012732

ABSTRACT

The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.


Subject(s)
Fibroblast Growth Factors , Hair Follicle , Hair , Animals , Cell Cycle , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Hair/growth & development , Hair Follicle/metabolism , Mice , Vibrissae
12.
Sci Adv ; 8(34): eabn8614, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36001671

ABSTRACT

Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.


Subject(s)
Mesenchymal Stem Cells , Spheroids, Cellular , Animals , Humans , Immunomodulation , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Transplantation, Heterologous
13.
Biomed Pharmacother ; 150: 112996, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462338

ABSTRACT

CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth. CXCL12 was highly expressed in dermal fibroblasts (DFs) and its level was elevated throughout the catagen and telogen phases of the hair cycle. CXCR4 is expressed in the dermal papilla (DP) and outer root sheath (ORS). In hair organ culture, hair loss was induced by recombinant CXCL12 therapy, which delayed the telogen-to-anagen transition and decreased hair length. In contrast, the suppression of CXCL12 using a neutralizing antibody and siRNA triggered the telogen-to-anagen transition and increased hair length in hair organ culture. Neutralization of CXCR7, one of the two receptors for CXCL12, only slightly affected hair growth. However, inhibition of CXCR4, the other receptor for CXCL12, increased hair growth to a considerable extent. In addition, in hair organ culture, the conditioned medium from DFs with CXCL12 siRNA considerably increased the hair length and induced proliferation of DP and ORS cells. CXCL12, through CXCR4 activation, increased STAT3 and STAT5 phosphorylation in DP and ORS cells. In contrast, blocking CXCL12 and CXCR4 decreased the phosphorylation of STAT3 and STAT5. In summary, these findings suggest that CXCL12 inhibits hair growth via the CXCR4/STAT signaling pathway and that CXCL12/CXCR4 pathway inhibitors are a promising treatment option for hair growth.


Subject(s)
Chemokine CXCL12 , Hair , Receptors, CXCR4 , Alopecia/metabolism , Chemokine CXCL12/metabolism , Hair/growth & development , Hair/metabolism , Hair Follicle/growth & development , Hair Follicle/metabolism , Humans , RNA, Small Interfering/metabolism , Receptors, CXCR4/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction
14.
Pharmaceutics ; 13(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34452268

ABSTRACT

Stem cell factor (SCF) and its receptor, cKIT, are novel regulators of pathological neovascularization in the eye, which suggests that inhibition of SCF/cKIT signaling may be a novel pharmacological strategy for treating neovascular age-related macular degeneration (AMD). This study evaluated the therapeutic potential of a newly developed fully human monoclonal antibody targeting cKIT, NN2101, in a murine model of neovascular AMD. In hypoxic human endothelial cells, NN2101 substantially inhibited the SCF-induced increase in angiogenesis and activation of the cKIT signaling pathway. In a murine model of neovascular AMD, intravitreal injection of NN2101 substantially inhibited the SCF/cKIT-mediated choroidal neovascularization (CNV), with efficacy comparable to aflibercept, a vascular endothelial growth factor inhibitor. A combined intravitreal injection of NN2101 and aflibercept resulted in an additive therapeutic effect on CNV. NN2101 neither caused ocular toxicity nor interfered with the early retinal vascular development in mice. Ocular pharmacokinetic analysis in rabbits indicated that NN2101 demonstrated a pharmacokinetic profile suitable for intravitreal injection. These findings provide the first evidence of the potential use of the anti-cKIT blocking antibody, NN2101, as an alternative or additive therapeutic for the treatment of neovascular AMD.

15.
Aging (Albany NY) ; 13(16): 19978-19995, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404755

ABSTRACT

Dermal papilla cells (DPCs) tend to aggregate both in vitro and in vivo, which increases the hair inductivity of DPCs. However, the underlying mechanism of spheroid formation is unknown. We investigated whether collagen expression in human DPCs (hDPCs) is involved in the spheroid formation and hair inductivity of hDPCs and further examined the underlying molecular mechanism of collagen upregulation. The expression of diverse collagens, such as COL13A1 and COL15A1, was upregulated in three dimensional (3D)-cultured or intact DPCs, compared to 2D-cultured hDPCs. This collagen expression was a downregulated in aged hair follicle, and aged DPCs were difficult to aggregate. Blocking of COL13A1 and COL15A1 by small interfering RNA reduced aggregation, while induced senescence of hDPCs in vitro. Further, transforming growth factor-ß2 (TGF-ß2) expression decreases with aging, and is involved in regulating the expression of COL13A1 and COL15A1. Addition of recombinant TGF-ß2 delayed cellular senescence, and recovered spheroid formation in aged hDPCs by upregulating collagen levels. On the contrary, knock-out of TGF-ß2 induced the aging of DPCs, and inhibited spheroid formation. These results suggested that COL13A1 and COL15A1 expression is downregulated with aging in DPCs, and upregulation of collagen by TGF-ß2 induces the spheroid formation of DPCs. Therefore, TGF-ß2 supplement in DPC culture medium could enhance the maintenance and hair inductivity of DPCs.


Subject(s)
Aging/metabolism , Collagen Type XIII/metabolism , Collagen/metabolism , Dermis/metabolism , Hair Follicle/metabolism , Spheroids, Cellular/metabolism , Transforming Growth Factor beta2/metabolism , Aging/genetics , Cell Proliferation , Cells, Cultured , Cellular Senescence , Collagen/genetics , Collagen Type XIII/genetics , Dermis/cytology , Hair Follicle/cytology , Humans , Spheroids, Cellular/cytology , Transforming Growth Factor beta2/genetics
16.
Biomol Ther (Seoul) ; 29(6): 643-649, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34148869

ABSTRACT

Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/ß-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/ß-catenin pathway was activated by UFP-512 and siRNA for ß-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.

18.
Int J Mol Sci ; 22(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924406

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.


Subject(s)
Autophagy , Lactones/pharmacology , Melanosomes/metabolism , NF-E2-Related Factor 2/metabolism , Sequestosome-1 Protein/metabolism , Animals , Autophagy/drug effects , Autophagy/radiation effects , Gene Knockdown Techniques , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Lactones/chemistry , Male , Melanins/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/radiation effects , Melanoma, Experimental/pathology , Mice , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Ultraviolet Rays
19.
Biomaterials ; 271: 120752, 2021 04.
Article in English | MEDLINE | ID: mdl-33730631

ABSTRACT

Tissue repairing capacity and immunomodulatory effects of mesenchymal stem cells (MSCs) have been extensively utilized for treating various inflammatory disorders; however, inconsistent efficacy and therapeutic outcomes due to low survival rate after transplantation often restrain their clinical potential. To overcome these limitations, 3-dimensional culture (3D-culture) was established to augment stemness and paracrine functions of MSCs, although hypoxic stress at the core often leads to unexpected cell death. Thus, we designed a novel strategy to improve the microenvironment of MSCs by creating heterospheroids (HS) consisting of MSCs and quercetin (QUR)-loaded microspheres (MSCHS), to achieve local drug delivery to the cells. Notably, MSCHS exhibited resistance for senescence-associated phenotype and oxidative stress-induced apoptosis compared to 3D-cultured MSCs (MSC3D), as well as to 2D-cultured cells (MSC2D) in vitro. In a murine model of colitis, MSC3D and MSCHS exhibited enhanced anti-inflammatory impact than MSC2Dvia attenuating neutrophil infiltration and regulating helper T cell (Th) polarization into Th1 and Th17 cells. Interestingly, MSCHS provided better therapeutic outcomes compared to MSC3D, partially due to their enhanced survival capacity in vivo. Moreover, we found that MSC-derived paracrine factor, prostaglandin E2 (PGE2), can directly drive the epithelial regeneration process by inducing specialized tissue-repairing cell generation using the intestinal organoid culture. Importantly, MSC3D and MSCHS displayed an outstanding regeneration-inducing potency compared to MSC2D owing to their superior PGE2 secretion. Taken together, we suggest a convergent strategy of MSCHS formation with reactive oxygen species (ROS) scavenger, QUR, which can maximize the inflammation-attenuating and tissue-repairing capacity of MSCs, as well as the engraftment efficiency after transplantation.


Subject(s)
Colitis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cells, Cultured , Colitis/therapy , Immunomodulation , Mice
20.
Hypertension ; 76(6): 1778-1786, 2020 12.
Article in English | MEDLINE | ID: mdl-33100045

ABSTRACT

Loss of BMP (bone morphogenic protein) signaling induces a phenotype switch of pulmonary arterial smooth muscle cells (PASMCs), which is the pathological basis of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Here, we identified FGF12 (fibroblast growth factor 12) as a novel regulator of the BMP-induced phenotype change in PASMCs and elucidated its role in pulmonary vascular remodeling during PAH development. Using murine models of PAH and lung specimens of patients with PAH, we observed that FGF12 expression was significantly reduced in PASMCs. In human PASMCs, FGF12 expression was increased by canonical BMP signaling. FGF12 knockdown blocked the antiproliferative and prodifferentiation effect of BMP on human PASMCs, suggesting that FGF12 is required for the BMP-mediated acquisition of the quiescent and differentiated PASMC phenotype. Mechanistically, FGF12 regulated the BMP-induced phenotype change by inducing MEF2a (myocyte enhancer factor 2a) phosphorylation via p38MAPK signaling, thereby modulating the expression of MEF2a target genes involved in cell proliferation and differentiation. Furthermore, we observed that TG (transgenic) mice with smooth muscle cell-specific FGF12 overexpression were protected from chronic hypoxia-induced PAH development, pulmonary vascular remodeling, and right ventricular hypertrophy. Consistent with the in vitro data using human PASMCs, FGF12 TG mice showed increased MEF2a phosphorylation and a substantial change in MEF2a target gene expression, compared with the WT (wild type) controls. Overall, our findings demonstrate a novel BMP/FGF12/MEF2a pathway regulating the PASMC phenotype switch and suggest FGF12 as a potential target for the development of therapeutics for ameliorating pulmonary vascular remodeling in PAH.


Subject(s)
Fibroblast Growth Factors/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Vascular Remodeling/genetics , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Proliferation/genetics , Cells, Cultured , Fibroblast Growth Factors/metabolism , Humans , MAP Kinase Signaling System/genetics , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...