Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717553

ABSTRACT

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Subject(s)
Cell Proliferation , IMP Dehydrogenase , Animals , Female , Mice , DNA Damage , Fetal Development/genetics , Guanosine Triphosphate/metabolism , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Mice, Inbred C57BL , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cellular Structures/metabolism
2.
Cell Biosci ; 13(1): 193, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875990

ABSTRACT

BACKGROUND: In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS: Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS: These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.

3.
Front Cell Dev Biol ; 11: 1331584, 2023.
Article in English | MEDLINE | ID: mdl-38250322

ABSTRACT

Introduction: Orangutans, classified under the Pongo genus, are an endangered non-human primate (NHP) species. Derivation of induced pluripotent stem cells (iPSCs) represents a promising avenue for conserving the genetic resources of these animals. Earlier studies focused on deriving orangutan iPSCs (o-iPSCs) from Sumatran orangutans (Pongo abelii). To date, no reports specifically target the other Critically Endangered species in the Pongo genus, the Bornean orangutans (Pongo pygmaeus). Methods: Using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells to generate iPSCs (bo-iPSCs) from a female captive Bornean orangutan. In this study, we evaluate the colony morphology, pluripotent markers, X chromosome activation status, and transcriptomic profile of the bo-iPSCs to demonstrate the pluripotency of iPSCs from Bornean orangutans. Results: The bo-iPSCs were successfully derived from Bornean orangutans, using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells. When a modified 4i/L/A (m4i/L/A) culture system was applied to activate the WNT signaling pathway in these bo-iPSCs, the derived cells (m-bo-iPSCs) manifested characteristics akin to human naive pluripotent stem cells, including high expression levels of KLF17, DNMT3L, and DPPA3/5, as well as the X chromosome reactivation. Comparative RNA-seq analysis positioned the m-bo-iPSCs between human naive and formative pluripotent states. Furthermore, the m-bo-iPSCs express differentiation capacity into all three germlines, evidenced by controlled in vitro embryoid body formation assay. Discussion: Our work establishes a novel approach to preserve the genetic diversity of endangered Bornean orangutans while offering insights into primate stem cell pluripotency. In the future, derivation of the primordial germ cell-like cells (PGCLCs) from m-bo-iPSCs is needed to demonstrate the further specific application in species preservation and broaden the knowledge of primordial germ cell specification across species.

4.
Adv Sci (Weinh) ; : e2205451, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36373710

ABSTRACT

Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.

5.
Stem Cells Dev ; 31(21-22): 720-729, 2022 11.
Article in English | MEDLINE | ID: mdl-35801658

ABSTRACT

Haploinsufficiency of genes that participate in telomere elongation and maintenance processes, such as telomerase RNA component (Terc) and telomere reverse transcriptase (Tert), often leads to premature aging-related diseases such as dyskeratosis congenita and aplastic anemia. Previously, we reported that when mouse Terc+/- tail tip fibroblasts (TTFs) were used as donor cells for somatic cell nuclear transfer (SCNT, also known as cloning), the derivative embryonic stem cells (ntESCs) had elongated telomeres. In the present work, we are interested to know if an additional round of SCNT, or recloning, could lead to further elongation of telomeres. Terc+/- TTFs were used to derive the first-generation (G1) ntESCs, followed by a second round of SCNT using G1-Terc+/- ntESCs as donor cells to derive G2-Terc+/- ntESCs. Multiple lines of G1- and G2-Terc+/- ntESCs were efficiently established, and all expressed major pluripotent markers and supported efficient chondrocyte differentiation in vitro. Compared with donor TTFs, telomere lengths of G1 ntESCs were elongated to the level comparable with that in wild-type ntESCs. Interestingly, recloning did not further elongate the telomere lengths of Terc+/- ntESCs. Together, our work demonstrates that while a single round of SCNT is a viable means to reprogram Terc haploinsufficient cells to the ESC state, and to elongate these cells' telomere lengths, a second round of SCNT does not necessarily further elongate the telomeres.


Subject(s)
Telomerase , Mice , Animals , Telomerase/genetics , Telomerase/metabolism , RNA/genetics , Telomere/genetics , Embryonic Stem Cells/metabolism
6.
Stem Cells Dev ; 31(21-22): 696-705, 2022 11.
Article in English | MEDLINE | ID: mdl-35848514

ABSTRACT

Survival motor neuron (SMN) plays important roles in snRNP assembly and mRNA splicing. Deficiency of SMN causes spinal muscular atrophy (SMA), a leading genetic disease causing childhood mortality. Previous studies have shown that SMN regulates stem cell self-renewal and pluripotency in Drosophila and mouse and is abundantly expressed in mouse embryonic stem cells. However, whether SMN is required for establishment of pluripotency is unclear. In this study, we show that SMN is gradually upregulated in preimplantation mouse embryos and cultured cells undergoing cell reprogramming. Ectopic expression of SMN increased cell reprogramming efficiency, whereas knockdown of SMN impeded induced pluripotent stem cell (iPSC) colony formation. iPSCs could be derived from SMA model mice, but impairment in differentiation capacity may be present. The ectopic overexpression of SMN in iPSCs can upregulate the expression levels of some pluripotent genes and restore the neuronal differentiation capacity of SMA-iPSCs. Taken together, our findings not only demonstrate the functional relevance of SMN in establishment of cell pluripotency but also propose its potential application in facilitating iPSC derivation.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Atrophy, Spinal , Animals , Mice , Cellular Reprogramming/genetics , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Gene Expression
7.
Cell Mol Life Sci ; 79(8): 420, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35833994

ABSTRACT

The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.


Subject(s)
IMP Dehydrogenase , Intracellular Space , Polymers , Cell Compartmentation/physiology , Humans , IMP Dehydrogenase/metabolism , Intracellular Space/metabolism , Polymers/metabolism
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35409332

ABSTRACT

Inverted repeat (IR) DNA sequences compose cruciform structures. Some genetic disorders are the result of genome inversion or translocation by cruciform DNA structures. The present study examined whether exogenous DNA integration into the chromosomes of transgenic animals was related to cruciform DNA structures. Large imperfect cruciform structures were frequently predicted around predestinated transgene integration sites in host genomes of microinjection-based transgenic (Tg) animals (αLA-LPH Tg goat, Akr1A1eGFP/eGFP Tg mouse, and NFκB-Luc Tg mouse) or CRISPR/Cas9 gene-editing (GE) animals (αLA-AP1 GE mouse). Transgene cassettes were imperfectly matched with their predestinated sequences. According to the analyzed data, we proposed a putative model in which the flexible cruciform DNA structures acted as a legible template for DNA integration into linear DNAs or double-strand break (DSB) alleles. To demonstrate this model, artificial inverted repeat knock-in (KI) reporter plasmids were created to analyze the KI rate using the CRISPR/Cas9 system in NIH3T3 cells. Notably, the KI rate of the 5' homologous arm inverted repeat donor plasmid (5'IR) with the ROSA gRNA group (31.5%) was significantly higher than the knock-in reporter donor plasmid (KIR) with the ROSA gRNA group (21.3%, p < 0.05). However, the KI rate of the 3' inverted terminal repeat/inverted repeat donor plasmid (3'ITRIR) group was not different from the KIR group (23.0% vs. 22.0%). These results demonstrated that the legibility of the sequence with the cruciform DNA existing in the transgene promoted homologous recombination (HR) with a higher KI rate. Our findings suggest that flexible cruciform DNAs folded by IR sequences improve the legibility and accelerate DNA 3'-overhang integration into the host genome via homologous recombination machinery.


Subject(s)
DNA, Cruciform , RNA, Guide, Kinetoplastida , Animals , Homologous Recombination , Mice , Mice, Transgenic , NIH 3T3 Cells , RNA, Guide, Kinetoplastida/genetics
9.
Exp Cell Res ; 405(2): 112684, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34129847

ABSTRACT

Cytidine triphosphate synthase (CTPS) catalyzes the rate-limiting step of de novo CTP biosynthesis. An intracellular structure of CTPS, the cytoophidium, has been found in many organisms including prokaryotes and eukaryotes. Formation of the cytoophidium has been suggested to regulate the activity and stability of CTPS and may participate in certain physiological events. Herein, we demonstrate that both CTPS1a and CTPS1b in zebrafish are able to form the cytoophidium in cultured cells. A point mutation, H355A, abrogates cytoophidium assembly of zebrafish CTPS1a and CTPS1b. In addition, we show the presence of CTPS cytoophidia in multiple tissues of larval and adult fish under normal conditions, while treatment with a CTPS inhibitor 6-diazo-5-oxo-l-norleucine (DON) can induce more cytoophidia in some tissues. Our findings reveal that forming the CTPS cytoophidium is a natural phenomenon of zebrafish and provide valuable information for future research on the physiological importance of this intracellular structure in vertebrates.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Cytidine Triphosphate/metabolism , Eukaryota/cytology , Prokaryotic Cells/cytology , Animals , Cell Line , Nitric Oxide Synthase/metabolism , Zebrafish
10.
Dev Biol ; 478: 89-101, 2021 10.
Article in English | MEDLINE | ID: mdl-34048735

ABSTRACT

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide biosynthesis. Its activity is negatively regulated by the binding of GTP. IMPDH can form a membraneless subcellular structure termed the cytoophidium in response to certain changes in the metabolic status of the cell. The polymeric form of IMPDH, which is the subunit of the cytoophidium, has been shown to be more resistant to the inhibition by GTP at physiological concentrations, implying a functional correlation between cytoophidium formation and the upregulation of GTP biosynthesis. Herein we demonstrate that zebrafish IMPDH1b and IMPDH2 isoforms can assemble abundant cytoophidium in most of cultured cells under stimuli, while zebrafish IMPDH1a shows distinctive properties of forming the cytoophidium in different cell types. Point mutations that disrupt cytoophidium structure in mammalian models also prevent the aggregation of zebrafish IMPDHs. In addition, we discover the presence of the IMPDH cytoophidium in various tissues of larval and adult fish under normal growth conditions. Our results reveal that polymerization and cytoophidium assembly of IMPDH can be a regulatory machinery conserved among vertebrates, and with specific physiological purposes.


Subject(s)
Cytoplasmic Structures/ultrastructure , IMP Dehydrogenase/chemistry , Zebrafish Proteins/chemistry , Zebrafish/metabolism , Animals , Cell Line , Cytoplasmic Structures/chemistry , Gene Expression , Guanosine Triphosphate/biosynthesis , Guanosine Triphosphate/metabolism , Humans , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Point Mutation , Up-Regulation , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Exp Cell Res ; 405(1): 112662, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34022203

ABSTRACT

The cytoophidium, a filamentous structure formed by metabolic enzymes, has emerged as a novel regulatory machinery for certain proteins. The rate-limiting enzymes of de novo CTP and GTP synthesis, cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH), are the most characterized cytoophidium-forming enzymes in mammalian models. Although the assembly of CTPS cytoophidia has been demonstrated in various organisms including multiple human cancers, a systemic survey for the presence of CTPS cytoophidia in mammalian tissues in normal physiological conditions has not yet been reported. Herein, we examine major organs of adult mouse and observe that CTPS cytoophidia are displayed by a specific thymocyte population ranging between DN3 to early DP stages. Most of these cytoophidium-presenting cells have both CTPS and IMPDH cytoophidia and undergo rapid cell proliferation. In addition, we show that cytoophidium formation is associated with active glycolytic metabolism as the cytoophidium-presenting cells exhibit higher levels of c-Myc, phospho-Akt and PFK. Inhibition of glycolysis with 2DG, however, disrupts most of cytoophidium structures and impairs cell proliferation. Our findings not only indicate that the regulation of CTPS and IMPDH cytoophidia are correlated with the metabolic switch triggered by pre-TCR signaling, but also suggest physiological roles of the cytoophidium in thymocyte development.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Cytidine Triphosphate/metabolism , Cytoskeleton/physiology , IMP Dehydrogenase/metabolism , Thymocytes/cytology , Animals , Cell Proliferation , Female , Male , Mice , Mice, Inbred ICR , Signal Transduction , Thymocytes/metabolism
12.
Int J Mol Sci ; 22(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440839

ABSTRACT

Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.


Subject(s)
Cell Differentiation , Germ Cells/cytology , Germ Cells/metabolism , Survival of Motor Neuron 1 Protein/genetics , Animals , Azoospermia/etiology , Azoospermia/metabolism , Cell Self Renewal , Cell Survival/genetics , Cells, Cultured , Disease Models, Animal , Gene Expression , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Male , Mice , Motor Neurons/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism , Survival of Motor Neuron 1 Protein/metabolism
13.
Int J Mol Sci ; 22(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466434

ABSTRACT

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (-1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (-1369~+28 nt), Δ2-pGzmg (-939~+28 nt), Δ3-pGzmg (-711~+28 nt) and Δ4-pGzmg (-417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the -417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Granzymes/genetics , STAT3 Transcription Factor/genetics , Animals , Blastocyst/physiology , Cell Nucleus/genetics , Female , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Inbred ICR , Pregnancy , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcriptional Activation/genetics , Zygote/physiology
14.
J Cell Sci ; 133(9)2020 05 11.
Article in English | MEDLINE | ID: mdl-32184263

ABSTRACT

Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.


Subject(s)
Carbon-Nitrogen Ligases , Histidine , Animals , Cytidine Triphosphate , Histidine/genetics , Keratins
15.
Int J Mol Sci ; 21(3)2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31991812

ABSTRACT

The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.


Subject(s)
Cell Differentiation , Spermatogenesis , Spermatogonia/cytology , Spermatogonia/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Survival of Motor Neuron 1 Protein/genetics , Animals , Cell Self Renewal/genetics , Cell Survival , Cells, Cultured , Gene Expression Regulation, Developmental , Male , Mice , Signal Transduction , Survival of Motor Neuron 1 Protein/metabolism , Testis/cytology , Testis/metabolism
16.
Int J Mol Sci ; 20(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30870992

ABSTRACT

Mammalian telomere lengths are primarily regulated by telomerase, consisting of a reverse transcriptase protein (TERT) and an RNA subunit (TERC). We previously reported the generation of mouse Terc+/- and Terc-/- embryonic stem cells (ntESCs) by somatic cell nuclear transfer. In the present work, we investigated the germ layer development competence of Terc-/-, Terc+/- and wild-type (Terc+/+) ntESCs. The telomere lengths are longest in wild-type but shortest in Terc-/- ntESCs, and correlate reversely with the population doubling time. Interestingly, while in vitro embryoid body (EB) differentiation assay reveals EB size difference among ntESCs of different genotypes, the more stringent in vivo teratoma assay demonstrates that Terc-/- ntESCs are severely defective in differentiating into the mesodermal lineage cartilage. Consistently, in a directed in vitro chondrocyte differentiation assay, the Terc-/- cells failed in forming Collagen II expressing cells. These findings underscore the significance in maintaining proper telomere lengths in stem cells and their derivatives for regenerative medicine.


Subject(s)
Cell Differentiation/physiology , Cell Nucleus/physiology , Chondrocytes/physiology , Mouse Embryonic Stem Cells/physiology , RNA/genetics , Telomerase/genetics , Animals , Cartilage/physiology , Cell Differentiation/genetics , Cell Nucleus/genetics , Cells, Cultured , Chondrogenesis/genetics , Chondrogenesis/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Transfer Techniques , Telomere/genetics , Telomere Homeostasis/genetics , Telomere Homeostasis/physiology
17.
Cell Rep ; 24(10): 2733-2745.e7, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30184506

ABSTRACT

CTP synthase (CTPS) forms compartmentalized filaments in response to substrate availability and environmental nutrient status. However, the physiological role of filaments and mechanisms for filament assembly are not well understood. Here, we provide evidence that CTPS forms filaments in response to histidine influx during glutamine starvation. Tetramer conformation-based filament formation restricts CTPS enzymatic activity during nutrient deprivation. CTPS protein levels remain stable in the presence of histidine during nutrient deprivation, followed by rapid cell growth after stress relief. We demonstrate that filament formation is controlled by methylation and that histidine promotes re-methylation of homocysteine by donating one-carbon intermediates to the cytosolic folate cycle. Furthermore, we find that starvation stress and glutamine deficiency activate the GCN2/ATF4/MTHFD2 axis, which coordinates CTPS filament formation. CTPS filament formation induced by histidine-mediated methylation may be a strategy used by cancer cells to maintain homeostasis and ensure a growth advantage in adverse environments.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Histidine/metabolism , Animals , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Folic Acid/metabolism , Homocysteine/metabolism , Humans , Methylation , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism
18.
FEBS J ; 285(20): 3753-3768, 2018 10.
Article in English | MEDLINE | ID: mdl-30085408

ABSTRACT

Inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthase (CTPS) are two metabolic enzymes that perform rate-limiting steps in the de novo synthesis of purine and pyrimidine nucleotides, respectively. It has been shown that IMPDH and CTPS can comprise a filamentous macrostructure termed the cytoophidium, which may play a role in regulation of their catalytic activity. Although these two proteins may colocalise in the same cytoophidium, how they associate with one another is still elusive. As reported herein, we established a model HeLa cell line coexpressing OFP-tagged IMPDH2 and GFP-tagged CTPS1 and recorded the assembly, disassembly and movement of the cytoophidium in live cells. Moreover, by using super-resolution confocal imaging, we demonstrate how IMPDH- and CTPS-based filaments are aligned or intertwined in the mixed cytoophidium. Collectively, our findings provide a panorama of cytoophidium dynamics and suggest that IMPDH and CTPS cytoophidia may coordinate by interfilament interaction.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Cytidine Triphosphate/metabolism , Cytoskeleton/metabolism , Genes, Reporter , IMP Dehydrogenase/metabolism , Cytoskeleton/ultrastructure , HeLa Cells , Humans , IMP Dehydrogenase/ultrastructure , Microscopy, Confocal
19.
Cell Div ; 13: 5, 2018.
Article in English | MEDLINE | ID: mdl-29946345

ABSTRACT

BACKGROUND: Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. RESULTS: In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. CONCLUSIONS: Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis.

20.
Exp Cell Res ; 361(2): 292-299, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29097181

ABSTRACT

CTP synthase (CTPS) can aggregate into an intracellular macrostructure, the cytoophidium, in various organisms including human cells. Previous studies have shown that assembly of human CTPS cytoophidia may be correlated with the cellular metabolic status, and is able to promote the activity of CTPS. A correlation between the cytoophidium and cancer metabolism has been proposed but not yet been revealed. In the current study we provide clear evidence of the presence of CTPS cytoophidia in various human cancers and some non-cancerous tissues. Moreover, among 203 tissue samples of hepatocellular carcinoma, 56 (28%) samples exhibited many cytoophidia, whereas no cytoophidia were detected in adjacent non-cancerous hepatocytes for all samples. Our findings suggest that the CTPS cytoophidium may participate in the adaptive metabolism of human hepatocellular carcinoma.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Carcinoma, Hepatocellular/chemistry , Liver Neoplasms/chemistry , Neoplasm Proteins/genetics , Protein Aggregates , Aged , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Gene Expression , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...