Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 24(14): 7532-7, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18540641

ABSTRACT

The current investigation is centered on the thermal decomposition (700 degrees C) of acetyl acetonates of Ni, Co, and Fe in a closed reactor that was conducted by employing an external magnetic field (MF) of 10T. Interestingly, reactions of Co and Ni acetyl acetonates under a 10T MF produce Co and Ni nanoparticles (NPs) coated with carbon, while Fe acetyl acetonate produces Fe3O4 uncoated with carbon. Additionally, it is observed that all the as-formed magnetic particles tend to align in one dimension along applied MF; thus, this process can be used to fabricate large arrays of magnetic nanoparticles. The effect of an applied MF to synthesize morphologically and compositionally different products from corresponding precursors with their mesoscopic organization is the key theme of the present paper, explained with a plausible mechanism.

2.
Inorg Chem ; 46(12): 4951-9, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-17487966

ABSTRACT

The current investigation is centered on the thermal decomposition of iron(II) acetyl acetonate, Fe(C5H7O2)2, in a closed cell at 700 degrees C, which is conducted under a magnetic field (MF) of 10 T. The product is compared with a similar reaction that was carried out without a MF. This article shows how the reaction without a MF produces spherical Fe3O4 particles coated with carbon. The same reaction in the presence of a 10 T MF causes the rejection of the carbon from the surface of pyramid-shaped Fe3O4 particles, increases the Fe3O4 particle diameter, forms separate carbon particles, and leads to the formation of an anisotropic (long cigarlike) orientation of Fe3O4 pyramids and C sheets. The macroscopic orientation of Fe3O4 pyramids+C sheets is stable even after the removal of an external MF. The suggested process can be used to fabricate large arrays of uniform wires comprised of some magnetic nanoparticles, and to improve the magnetic properties of nanoscale magnetic materials. The probable mechanism is developed for the growth and assembly behavior of magnetic Fe3O4 pyramids+C sheets under an external MF. The effect of an applied MF to synthesize morphologically different, but structurally the same, products with mesoscopic organization is the key theme of the present paper.


Subject(s)
Carbon/chemistry , Ferric Compounds/chemistry , Magnetics , Molecular Conformation , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...