Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35591165

ABSTRACT

Increasing the number of satellites in a global navigation satellite system (GNSS) improves the positioning accuracy and increases availability. However, it reduces the positioning accuracy improvement rate and increases the calculation loads, which can cause battery usage problems in mobile devices using a GNSS. An appropriate satellite selection method is required. One current method entails the use of ideal satellite placement with respect to the minimum geometric dilution of precision (GDOP). In this study, the described ideal satellite placement with the minimum GDOP were divided in terms of the horizontal dilution of precision (HDOP) and vertical dilution of precision (VDOP). HDOP and VDOP were mathematically derived and analyzed. The derived formula was verified using simulations. The analysis was performed with actual dual GNSS satellite data. The satellites adjacent to the ideal placement were selected and the DOP was calculated. Simply selecting satellites closest to the ideal placement afforded large values for HDOP and VDOP. This issue was addressed using a satellite changing algorithm considering the dual GNSS, resulting in reduced values of the HDOP and VDOP.


Subject(s)
Algorithms , Geographic Information Systems , Data Collection
2.
Sensors (Basel) ; 21(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451111

ABSTRACT

Point cloud data is essential measurement information that has facilitated an extended functionality horizon for urban mobility. While 3D lidar and image-depth sensors are superior in implementing mapping and localization, sense and avoidance, and cognitive exploration in an unknown area, applying 2D lidar is inevitable for systems with limited resources of weight and computational power, for instance, in an aerial mobility system. In this paper, we propose a new pose estimation scheme that reflects the characteristics of extracted feature point information from 2D lidar on the NDT framework for exploiting an improved point cloud registration. In the case of the 2D lidar point cloud, vertices and corners can be viewed as representative feature points. Based on this feature point information, a point-to-point relationship is functionalized and reflected on a voxelized map matching process to deploy more efficient and promising matching performance. In order to present the navigation performance of the mobile object to which the proposed algorithm is applied, the matching result is combined with the inertial navigation through an integration filter. Then, the proposed algorithm was verified through a simulation study using a high-fidelity flight simulator and an indoor experiment. For performance validation, both results were compared and analyzed with the previous techniques. In conclusion, it was demonstrated that improved accuracy and computational efficiency could be achieved through the proposed algorithms.

3.
Sensors (Basel) ; 18(10)2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30347856

ABSTRACT

This paper proposes a novel and accurate method for estimating the flight coefficient of a flying disc typically operating at a high rotation rate. In particular, the proposed method introduces a new algorithm that takes advantage of magnetic data measured by a miniaturized sensor module onboard a conventional disc. Since the geomagnetic field measured by the magnetic sensor mounted on the rotating body yields a general sinusoidal waveform, a frequency domain analysis is employed in computing the rotational rate. Furthermore, on the basis of the estimated rate during a whole flight period, a yaw damping derivative coefficient is derived, which enables an accurate prediction of the disc's flight trajectory. For performance verification, both a reference rotation table test and a real flight test are performed, for which a miniaturized embedded sensor module is designed and manufactured for an onboard flight test. A reference rotation test validates the performance of the proposed method. Subsequently, a flight test, in which a simulator-based trajectory is compared with the true reference trajectory, verifies that the proposed method better predicts the flight trajectory by incorporating the estimated coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...