Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 112(10): 3015-24, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21678473

ABSTRACT

Evidence suggests overexpression of COX-2 and its role in many human cancers, including lung. However, the regulatory mechanism underlying COX-2 overexpression in lung cancer is not fully understood. We herein investigated whether COX-2 is overexpressed in human airway cancer cell lines, including A549 (lung), Hep-2 (bronchial), and NCI-H292 (alveolar). When grown in cell culture medium containing 10% FBS (serum), of note, there was strong and transient induction of COX-2 protein and mRNA in NCI-H292 cells, but little or low COX-2 expression is seen in A549 or Hep-2 cells. Interestingly, strong and sustained activities of ERK-1/2, JNK-1/2, p38 MAPK, and PKB were also shown in NCI-H292 cells grown in presence of serum. Profoundly, results of pharmacological inhibition studies demonstrated that the serum-dependent COX-2 up-regulation in NCI-H292 cells is attributed to not only the p38 MAPK-, PI3K/PKB-, and ERK-1/2-mediated COX-2 transcriptional up-regulation but also the p38 MAPK- and ERK-1/2-mediated post-transcriptional COX-2 mRNA stabilization. Of further note, it was shown that the ERK-1/2 and PI3K/PKB (but not COX-2, p38 MAPK, and JNK-1/2) activities are necessary for growth of NCI-H292 cells. These findings collectively demonstrate for the first time that COX-2 expression is transiently up-regulated by serum addition in NCI-H292 cells and the serum-induced COX-2 expression is closely linked to the p38 MAPK-, ERK-1/2-, and PI3K/PKB-mediated COX-2 transcriptional and post-transcriptional up-regulation.


Subject(s)
Cyclooxygenase 2/metabolism , Lung Neoplasms/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Cyclooxygenase 2/genetics , Humans , Lung Neoplasms/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phosphatidylinositol 3-Kinases/genetics , Polymerase Chain Reaction , Protein Stability , RNA Stability , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/genetics
2.
J Biol Chem ; 282(38): 27622-32, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17635918

ABSTRACT

COX-2 and its products, including prostaglandin E(2), are involved in many inflammatory processes. Glucosamine (GS) is an amino monosaccharide and has been widely used for alternative regimen of (osteo) arthritis. However, the mechanism of action of GS on COX-2 expression remains unclear. Here we describe a new action mechanism of glucosamine hydrochloride (GS-HCl) to tackle endogenous and agonist-driven COX-2 at protein level. GS-HCl (but not GS sulfate, N-acetyl GS, or galactosamine HCl) resulted in a shift in the molecular mass of COX-2 from 72-74 to 66-70 kDa and concomitant inhibition of prostaglandin E(2) production in a concentration-dependent manner in interleukin (IL)-1beta-treated A549 human lung epithelial cells. Remarkably, GS-HCl-mediated decrease in COX-2 molecular mass was associated with inhibition of COX-2 N-glycosylation during translation, as assessed by the effect of tunicamycin, the protein N-glycosylation inhibitor, or of cycloheximide, the translation inhibitor, on COX-2 modification. Specifically, the effect of low concentration of GS-HCl (1 mM) or of tunicamycin (0.1 microg/ml) to produce the aglycosylated COX-2 was rescued by the proteasomal inhibitor MG132 but not by the lysosomal or caspase inhibitors. However, the proteasomal inhibitors did not show an effect at 5 mM GS-HCl, which produced the aglycosylated or completely deglycosylated form of COX-2. Notably, GS-HCl (5 mM) also facilitated degradation of the higher molecular species of COX-2 in IL-1beta-treated A549 cells that was retarded by MG132. GS-HCl (5 mM) was also able to decrease the molecular mass of endogenous and IL-1beta- or tumor necrosis factor-alpha-driven COX-2 in different human cell lines, including Hep2 (bronchial) and H292 (laryngeal). However, GS-HCl did not affect COX-1 protein expression. These results demonstrate for the first time that GS-HCl inhibits COX-2 activity by preventing COX-2 co-translational N-glycosylation and by facilitating COX-2 protein turnover during translation in a proteasome-dependent manner.


Subject(s)
Chlorides/chemistry , Cyclooxygenase 2/metabolism , Glucosamine/chemistry , Glucosamine/physiology , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Dinoprostone/metabolism , Epithelium/metabolism , Galactosamine/chemistry , Glycosylation , Humans , Inflammation , Interleukin-1beta/metabolism , Lung/metabolism , Models, Biological , Osteoarthritis/metabolism
3.
Int J Oncol ; 29(6): 1509-15, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17088990

ABSTRACT

Overexpression of inducible nitric oxide synthase (iNOS) and the resultant overproduction of NO has been implicated in neuronal inflammatory diseases. Leptomycin B (LMB), a metabolite of Streptomyces, has been identified as a specific inhibitor of CRM1 nuclear export receptor. In this study, we evaluated the effect of LMB on lipopolysaccharide (LPS)-induced iNOS expression in BV2 cells, a murine microglial cells and the associated mechanisms. LMB strongly inhibited LPS-induced iNOS protein and mRNA expressions in BV2 cells in which 10 ng/ml of LMB (18 nM) was sufficient to greatly down-regulate iNOS by LPS, suggesting the potency of LMB to inhibit iNOS. The data of iNOS promoter-driven luciferase assay further suggested that the LMB inhibitory effect was in part due to inhibition of iNOS transcription. However, LPS-induced activation of various intracellular signaling proteins, such as nuclear factor-kappaB (NF-kappaB), extracellular signal-regulated kinases (ERKs), p38s, and c-Jun N-terminal kinases (JNKs), whose activations are known to be important for iNOS expression by LPS in BV2 cells, were not affected in the presence of LMB. Together, these results suggest that LMB inhibits iNOS expression in response to LPS in BV2 microglia, and the inhibition seems to be associated with blockage of CRM1-mediated iNOS mRNA nuclear export and also in part transcriptional down-regulation of iNOS, but not through modulation of NF-kappaB and the mitogen-activated protein kinase signaling pathways.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Microglia/enzymology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Streptomyces/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Drug Interactions , Enzyme Activation/drug effects , Enzyme Induction/drug effects , Fatty Acids, Unsaturated/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Lipopolysaccharides/pharmacology , Mice , Microglia/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...