Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16629, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198744

ABSTRACT

Muscle atrophy greatly affects the prognosis of patients in the intensive care unit, but the rate of change remains unclear. In this prospective observational study, we used ultrasound to measure the change in muscle thickness of the rectus femoris (RF) and vastus intermedius (VI) in 284 patients who were admitted to the SICU of Taoyuan General Hospital between January 1 and June 30, 2020. Patients were excluded if there is a wound at the right thigh which hinders the ultrasonography probe from placing. Daily rates of muscle atrophy were calculated using linear analysis and the ratios of change were plotted against the period of hospitalization. Patient characteristics were adjusted using propensity score matching and differences between men and women were analyzed. A linear mixed model was used to calculate the influence of other factors on muscle loss. The average daily atrophy rates of the RF and VI were 0.84% and 0.98%, respectively. The rate of atrophy was the highest in the third and fourth weeks. Daily atrophy rates of the RF and VI were approximately three times higher in women than in men. Protective factors of muscle atrophy included higher BMI and lower initial thickness of the RF and VI. Our study depicts the trend of muscle atrophy in the ICU and suggests more discussion in prevention to be conducted especially for women.


Subject(s)
Muscle, Skeletal , Muscular Atrophy , Female , Humans , Intensive Care Units , Male , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Muscular Atrophy/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Ultrasonography
2.
BMC Endocr Disord ; 22(1): 82, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351088

ABSTRACT

BACKGROUND: Pituitary stalk interruption syndrome (PSIS) is a rare disease associated with different level of anterior pituitary hormone deficiency resulting with a variety of clinical manifestations which could limit exercise capacity. Cardiopulmonary exercise test (CPET) is valuable in differential diagnosis of exercise intolerance and exercise prescription. CASE PRESENTATION: An 18-year-old male adolescent was diagnosed with PSIS at 4 years old, had undergone growth hormone supplement until puberty, and was referred to rehabilitation department due to exercise intolerance. We arranged pulmonary function test (PFT) and CPET to clarify the cause of limited capacity. The test result provided evidence of moderate functional impairment (54% of predicted maximal oxygen uptake) mainly affected by physical unfitness without significant cardiovascular or pulmonary limitations. CONCLUSION: CPET serves as a valuable tool for diagnostic purpose. Aerobic and resistance exercise training for the patient should be conducted promptly for better prognosis but under safe circumstances, with criteria which could be provided by CPET results.


Subject(s)
Exercise Test , Pituitary Diseases , Adolescent , Child, Preschool , Exercise , Exercise Test/methods , Exercise Tolerance , Humans , Male , Pituitary Diseases/complications , Pituitary Diseases/diagnosis , Pituitary Gland/diagnostic imaging
3.
Front Pediatr ; 9: 802645, 2021.
Article in English | MEDLINE | ID: mdl-35096713

ABSTRACT

OBJECTIVE: Pulmonary valve (PV) stenosis affects cardiac pulmonary function and exercise performance. A cardiopulmonary exercise test (CPET) combined with a transthoracic echocardiogram (TTE) can measure exercise performance, disease progression, and treatment effects. We assessed the exercise capacity in children with PV stenosis by conducting CPET and TTE. METHODS: From 2005 to 2021, 84 patients with PV stenosis aged 6-18 years were enrolled; 43 were treated with balloon pulmonary valvuloplasty (BPV) (Group A), and 41 received follow-up care (Group B), and their CPET and pulmonary function test results were compared with 84 healthy, matched individuals (Control). We also conducted TTE to compare the peak pulmonary artery pulse wave velocity and pulmonary valve (PV) area before and after catheterization and follow-up care. RESULTS: There were no significant differences among the CPET parameters of the patient groups and controls in anaerobic metabolic equivalent (MET) (group A: 6.44 ± 0.58; group B: 6.28 ± 0.47, control: 6.92 ± 0.39, p = 0.110), peak MET (group A: 9.32 ± 0.74; group B: 9.13 ± 0.63; control: 9.80 ± 0.52, p = 0.263), and heart rate recovery (group A: 28.04 ± 4.70; group B: 26.44 ± 3.43, control:26.10 ± 2.42, p = 0.718). No significant differences were found in the pulmonary functions between the three groups. The pulmonary artery pulse wave velocity significantly decreased after catheterization (3.97 ± 1.50 vs. 1.95 ± 0.94, p < 0.0001), but not after follow-up care (1.67 ± 0.77 vs. 1.75 ± 0.66, p = 0.129). The pulmonary vale area significantly improved in group A (0.89 ± 0.71 vs. 1.16 ± 0.58, p < 0.0001), whereas only insignificant progression of PV stenosis was observed in group B (1.60 ± 0.64 vs. 1.57 ± 0.65, p = 0.110). CONCLUSIONS: Patients treated with BPV had a similar exercise capacity with that of patients under follow-up care and the healthy controls. Larger or multi-center studies should be conducted to confirm the physical fitness of pediatric patients with PV stenosis after management.

SELECTION OF CITATIONS
SEARCH DETAIL
...