Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5364, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33686195

ABSTRACT

Elemental type-II superconducting niobium is the material of choice for superconducting radiofrequency cavities used in modern particle accelerators, light sources, detectors, sensors, and quantum computing architecture. An essential challenge to increasing energy efficiency in rf applications is the power dissipation due to residual magnetic field that is trapped during the cool down process due to incomplete magnetic field expulsion. New SRF cavity processing recipes that use surface doping techniques have significantly increased their cryogenic efficiency. However, the performance of SRF Nb accelerators still shows vulnerability to a trapped magnetic field. In this manuscript, we report the observation of a direct link between flux trapping and incomplete flux expulsion with spatial variations in microstructure within the niobium. Fine-grain recrystallized microstructure with an average grain size of 10-50 µm leads to flux trapping even with a lack of dislocation structures in grain interiors. Larger grain sizes beyond 100-400 µm do not lead to preferential flux trapping, as observed directly by magneto-optical imaging. While local magnetic flux variations imaged by magneto-optics provide clarity on a microstructure level, bulk variations are also indicated by variations in pinning force curves with sequential heat treatment studies. The key results indicate that complete control of the niobium microstructure will help produce higher performance superconducting resonators with reduced rf losses1 related to the magnetic flux trapping.

2.
Sci Rep ; 8(1): 4798, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29555921

ABSTRACT

To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...