Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 9(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38251207

ABSTRACT

Snail control to complement mass drug administration is being promoted by the World Health Organization for schistosomiasis control. Oncomelania hupensis quadrasi, the snail intermediate host of Schistosoma japonicum in the Philippines, has a very focal distribution; thus, scrutinizing baseline data and parameters affecting this distribution is very crucial. In this study in Gonzaga, Cagayan, Philippines, snail habitats were surveyed, and the various factors affecting the existence of the snails were determined. Malacological surveys and the mapping of sites of perpetual wetness in five endemic and five neighboring non-endemic barangays were conducted. Environmental and physicochemical factors were also examined. Maps of both snail and non-snail sites were generated. Of the fifty sites surveyed, O. h. quadrasi were found in twelve sites, and two sites yielded snails that were infected with S. japonicum cercariae. Factors such as silty loam soil, proximity to a snail site, water ammonia, and soil attributes (organic matter, iron, and pH) are all significantly associated with the presence of snails. In contrast, types of habitats, temperatures, and soil aggregation have no established association with the existence of snails. Mapping snail sites and determining factors favoring snail presence are vital to eliminating snails. These approaches will significantly maximize control impact and minimize wasted efforts and resources, especially in resource-limited schistosomiasis endemic areas.

2.
Pathogens ; 8(4)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547610

ABSTRACT

BACKGROUND: The perpetuation of schistosomiasis japonica in the Philippines depends to a major extent on the persistence of its intermediate host Oncomelania hupensis quadrasi, an amphibious snail. While the malacological survey remains the method of choice in determining the contamination of the environment as evidenced by snails infected with schistosome larval stages, an emerging technology known as environmental DNA (eDNA) detection provides an alternative method. Previous reports showed that O. hupensis quadrasi eDNA could be detected in water, but no reports have been made on its detection in soil. METHODS: This study, thus focused on the detection of O. hupensis quadrasi eDNA from soil samples collected from two selected schistosomiasis-endemic barangays in Gonzaga, Cagayan Valley using conventional and TaqMan-quantitative (qPCR) PCRs. RESULTS: The results show that qPCR could better detect O. hupensis quadrasi eDNA in soil than the conventional method. In determining the possible distribution range of the snail, basic edaphic factors were measured and correlated with the presence of eDNA. The eDNA detection probability increases as the pH, phosphorous, zinc, copper, and potassium content increases, possibly indicating the conditions in the environment that favor the presence of the snails. A map was generated to show the probable extent of the distribution of the snails away from the body of the freshwater. CONCLUSION: The information generated from this study could be used to determine snail habitats that could be possible hotspots of transmission and should, therefore, be targeted for snail control or be fenced off from human and animal contact or from the contamination of feces by being a dumping site for domestic wastes.

3.
Am J Trop Med Hyg ; 90(6): 1140-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686739

ABSTRACT

Species and subspecies of the Oncomelania hupensis species complex are recognized as intermediate hosts of Schistosoma japonicum. Of these species and subspecies, O. quadrasi is distributed throughout the Philippines. This study used 12S ribosomal RNA sequences to explore the genetic structure of O. quadrasi populations in the Philippines. Three subspecies, O. h. hupensis, O. h. formosana, and O. h. chiui of this group were also examined. The phylogenetic tree and haplotypes network showed that O. quadrasi separated from the subspecies. Ten O. quadrasi haplotypes (Oq1-Oq10) clustered in relation to their geographic origin. Genetic differentiation (FST) and estimated gene flow (Nm) among populations showed significant differences, ranging from 0.556-1.000 to 0.00-0.74, respectively. Genetic differences among groups (FCT = 0.466), populations within a group (FSC = 0.727), and populations (FST = 0.854) were observed. These results indicate that the O. quadrasi populations in the Philippines have a substructure associated with their geographic origin.


Subject(s)
Genetic Variation/genetics , Schistosoma japonicum/physiology , Snails/genetics , Animals , Base Sequence , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genetic Structures , Haplotypes , Molecular Sequence Data , Philippines , Phylogeny , RNA/genetics , RNA, Mitochondrial , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Analysis, DNA , Snails/classification , Snails/parasitology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...