Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 311(Pt 2): 137104, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36347345

ABSTRACT

In the present study, a simple and sensitive method for detecting bisphenol A (BPA) in various environments, including groundwater, was described using a widespread electrochemical method. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects oon the nervous, reproductive, and immune systems. A novel metal-organic framework (UiO-66-NDC/GO) was synthesized, and its existence was confirmed by several characterization techniques like FTIR, UV-visible, XRD, SEM-EDX, Raman spectroscopy, and TGA. Due to the excellent electrocatalytic nature, UiO-66-NDC/GO was chosen as the sensor material and integrated on the surface of the bare carbon paste electrode (BCPE). The UiO-66-NDC/GO modified carbon paste electrode (MCPE) was engaged for the detection of BPA using techniques like cyclic Voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The applied sensor exhibited an astonishing outcome for BPA detection with high sensitivity and selectivity. The lower detection limit (LLOD) of 0.025 µM was achieved at the modified sensor with a linear concentration range of 10-70 µM. Moreover, the practical applicability of the sensor was tested on tap water, drinking water, and fresh liquid milk, giving an excellent recovery of BPA in the range of 94.8-99.3 (v.%). The proposed method could be employed for electrochemical device or a solid state device fabrication for the onsite monitoring of BPA.

2.
Environ Chem Lett ; 20(3): 1777-1800, 2022.
Article in English | MEDLINE | ID: mdl-35039752

ABSTRACT

Polyethylene terephthalate is a common plastic in many products such as viscose rayon for clothing, and packaging material in the food and beverage industries. Polyethylene terephthalate has beneficial properties such as light weight, high tensile strength, transparency and gas barrier. Nonetheless, there is actually increasing concern about plastic pollution and toxicity. Here we review the properties, occurrence, toxicity, remediation and analysis of polyethylene terephthalate as macroplastic, mesoplastic, microplastic and nanoplastic. Polyethylene terephthalate occurs in groundwater, drinking water, soils and sediments. Plastic uptake by humans induces diseases such as reducing migration and proliferation of human mesenchymal stem cells of bone marrow and endothelial progenitor cells. Polyethylene terephthalate can be degraded by physical, chemical and biological methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...