Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet J ; 306: 106186, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936461

ABSTRACT

African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods. Therefore, detecting antibodies against ASFV produced early in the infection can facilitate the prompt identification of infected pigs. This study focused on the p30 protein, an early expressed protein during ASFV infection, to develop an indirect ELISA. This method was established using the HEK293F suspension cell expression system, which has the ability to produce large quantities of correctly folded proteins with normal functionality. In this study, we developed an indirect ELISA test utilizing the p30 recombinant protein produced by the HEK293F suspension cell expression system as the antigen coating. The concentration of the p30 protein obtained from the HEK293F suspension cell expression system was measured at 4.668 mg/mL, serving as the foundation for establishing the indirect ELISA. Our findings indicate that the indirect ELISA method exhibits a sensitivity of 1:12800. Furthermore, it demonstrates high specificity and excellent reproducibility. Comparing our results to those obtained from the commercial kit, we found a coincidence rate of 98.148 % for the indirect ELISA. In summary, we have developed a sensitive method for detecting ASFV, providing a valuable tool for monitoring ASFV infection in pig herds.

2.
Microorganisms ; 11(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37764119

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR) is an adaptive immune system that defends most archaea and many bacteria from foreign DNA, such as phages, viruses, and plasmids. The link between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria remains unclear. To investigate the relationship between the structural characteristics, diversity, and distribution properties of the CRISPR-Cas system and the optimum growth temperature in thermophilic bacteria, genomes of 61 species of thermophilic bacteria with complete genome sequences were downloaded from GenBank in this study. We used CRISPRFinder to extensively study CRISPR structures and CRISPR-associated genes (cas) from thermophilic bacteria. We statistically analyzed the association between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria. The results revealed that 59 strains of 61 thermophilic bacteria had at least one CRISPR locus, accounting for 96.72% of the total. Additionally, a total of 362 CRISPR loci, 209 entirely distinct repetitive sequences, 131 cas genes, and 7744 spacer sequences were discovered. The average number of CRISPR loci and the average minimum free energy (MFE) of the RNA secondary structure of repeat sequences were positively correlated with temperature whereas the average length of CRISPR loci and the average number of spacers were negatively correlated. The temperature did not affect the average number of CRISPR loci, the average length of repeats, or the guanine-cytosine (GC) content of repeats. The average number of CRISPR loci, the average length of the repeats, and the GC content of the repeats did not reflect temperature dependence. This study may provide a new basis for the study of the thermophilic bacterial adaptation mechanisms of thermophilic bacteria.

3.
Microorganisms ; 11(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374889

ABSTRACT

ß-glucosidase derived from microorganisms has wide industrial applications. In order to generate genetically engineered bacteria with high-efficiency ß-glucosidase, in this study two subunits (bglA and bglB) of ß-glucosidase obtained from the yak rumen were expressed as independent proteins and fused proteins in lactic acid bacteria (Lactobacillus lactis NZ9000). The engineered strains L. lactis NZ9000/pMG36e-usp45-bglA, L. lactis NZ9000/pMG36e-usp45-bglB, and L. lactis NZ9000/pMG36e-usp45-bglA-usp45-bglB were successfully constructed. These bacteria showed the secretory expression of BglA, BglB, and Bgl, respectively. The molecular weights of BglA, BglB, and Bgl were about 55 kDa, 55 kDa, and 75 kDa, respectively. The enzyme activity of Bgl was significantly higher (p < 0.05) than that of BglA and BglB for substrates such as regenerated amorphous cellulose (RAC), sodium carboxymethyl cellulose (CMC-Na), desiccated cotton, microcrystalline cellulose, filter paper, and 1% salicin. Moreover, 1% salicin appeared to be the most suitable substrate for these three recombinant proteins. The optimum reaction temperatures and pH values for these three recombinant enzymes were 50 °C and 7.0, respectively. In subsequent studies using 1% salicin as the substrate, the enzymatic activities of BglA, BglB, and Bgl were found to be 2.09 U/mL, 2.36 U/mL, and 9.4 U/mL, respectively. The enzyme kinetic parameters (Vmax, Km, Kcat, and Kcat/Km) of the three recombinant strains were analyzed using 1% salicin as the substrate at 50 °C and pH 7.0, respectively. Under conditions of increased K+ and Fe2+ concentrations, the Bgl enzyme activity was significantly higher (p < 0.05) than the BglA and BglB enzyme activity. However, under conditions of increased Zn2+, Hg2+, and Tween20 concentrations, the Bgl enzyme activity was significantly lower (p < 0.05) than the BglA and BglB enzyme activity. Overall, the engineered lactic acid bacteria strains generated in this study could efficiently hydrolyze cellulose, laying the foundation for the industrial application of ß-glucosidase.

4.
J Virol ; 96(20): e0119222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197109

ABSTRACT

African swine fever virus (ASFV) causes significant morbidity and mortality in pigs worldwide. The lack of vaccines or therapeutic options warrants urgent further investigation. To this aim, we developed a rationally designed live attenuated ASFV-Δ110-9L/505-7R mutant based on the highly pathogenic Genotype II ASFV CN/GS/2018 backbone by deleting 2 well-characterized interferon inhibitors MGF110-9L and MGF505-7R. The mutant was slightly attenuated in vitro compared to parental ASFV but highly tolerant to genetic modifications even after 30 successive passages in vitro. Groups of 5 pigs were intramuscularly inoculated with increasing doses of the mutant, ranging from 103 to 106 hemadsorption units (HAD50). Thirty-five days later, all groups were challenged with 102 HAD50 of virulent parental ASFV. All the animals were clinically normal and devoid of clinical signs consistent with ASFV at the period of inoculation. In the virulent challenge, 2 animals from 103 HAD50-inoculated group and 1 animal from 104 HAD50-inoculated group were unprotected with severe postmortem and histological lesions. The rest of animals survived and manifested with relatively normal clinical appearance accompanied by tangible histological improvements in the extent of tissue damage. Meanwhile, antibody response, as represented by p30-specific antibody titers was positively correlated to protective efficacy, potentializing its usage as an indicator of protection. Moreover, compared to 1 dose, 2 doses provided additional protection, proving that 2 doses were better than 1 dose. The sufficiency in effectiveness supports the claim that our attenuated mutant may be a viable vaccine option with which to fight ASF. IMPORTANCE African swine fever virus (ASFV) is a causative agent of acute viral hemorrhagic disease of domestic swine which is associated with significant economic losses in the pig industry. The lack of vaccines or treatment options requires urgent further investigation. ASFV MGF110-9L and MGF505-7R, 2 well-characterized interferon inhibitors, were associated with viral virulence, host range, and immune modulation. In this study, a recombinant two-gene deletion ASFV mutant with deletion of MGF110-9L and MGF505-7R was constructed. The result showed that the mutant was safe, and also highly resistant to genetic modification even after 30 successive passages. High doses of our mutant (105 and 106 HAD50) provided sterile immunity and complete protection in a virulent challenge. Two doses were superior to 1 dose and provided additional protection. This study develops a new ASFV-specific live attenuated vaccine and may be a viable vaccine option against ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Classical Swine Fever , Viral Vaccines , Swine , Animals , Vaccines, Attenuated , Interferons/genetics , Viral Proteins/genetics , Antiviral Agents , Africa
5.
J Virol ; 96(14): e0032922, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35867564

ABSTRACT

Multigene family (MGF) gene products are increasingly reported to be implicated in African swine fever virus (ASFV) virulence and attenuation of host defenses, among which the MGF360-9L and MGF505-7R gene products are characterized by convergent but distinct mechanisms of immune evasion. Herein, a recombinant ASFV mutant, ASFV-Δ9L/Δ7R, bearing combinational deletions of MGF360-9L and MGF505-7R, was constructed from the highly virulent ASFV strain CN/GS/2018 of genotype II that is currently circulating in China. Pigs inoculated intramuscularly with 104 50% hemadsorption doses (HAD50) of the mutant remained clinically healthy without any serious side effects. Importantly, in a virulence challenge, all four within-pen contact pigs demonstrated clinical signs and pathological findings consistent with ASF. In contrast, vaccinated pigs (5/6) were protected and clinical indicators tended to be normal, accompanied by extensive tissue repairs. Similar to most viral infections, innate immunity and both humoral and cellular immune responses appeared to be vital for protection. Notably, transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR) analysis revealed a regulatory function of the mutant in dramatic and sustained expression of type I/III interferons and inflammatory and innate immune genes in vitro. Furthermore, infection with the mutant elicited an early and robust p30-specific IgG response, which coincided and was strongly correlated with the protective efficacy. Analysis of the cellular response revealed a strong ASFV-specific interferon gamma (IFN-γ) response and immunostaining of CD4+ T cells coupled with a high level of CD163+ macrophage infiltration in spleens of vaccinated pigs. Our study identifies a new mechanism of immunological regulation by ASFV MGFs that rationalizes the design of live attenuated vaccine for implementation of improved control strategies to eradicate ASFV. IMPORTANCE Currently, the deficiency in commercially available vaccines or therapeutic options against African swine fever constitutes a matter of major concern in the swine industry globally. Here, we report the design and construction of a recombinant ASFV mutant harboring combinational deletions of interferon inhibitors MGF360-9L and MGF505-7R based on a genotype II ASFV CN/GS/2018 strain currently circulating in China. The mutant was completely attenuated when inoculated at a high dose of 104 HAD50. In the virulence challenge with homologous virus, sterile immunity was achieved, demonstrating the mutant's potential as a promising vaccine candidate. This sufficiency of effectiveness supports the claim that this live attenuated virus may be a viable vaccine option with which to fight ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , African Swine Fever/prevention & control , African Swine Fever Virus/genetics , Animals , Gene Deletion , Interferon Type I , Swine , Vaccines, Attenuated , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...