Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
RSC Adv ; 8(21): 11622-11632, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-35542775

ABSTRACT

In this paper, a meso-porous TiO2 (titania) coating is shown to effectively protect a carbon-sulfur composite cathode from polysulfide dissolution. The cathode consisted of a sulfur impregnated carbon support coated with a few microns thick mesoporous titania layer. The carbon-sulfur cathode is made using activated carbon powder (ACP) derived from biomass. The mesoporous titania coated carbon-sulfur cathodes exhibit a retention capacity after 100 cycles at C/3 rate (433 mA g -1) and stabilized at a capacity around 980 mA h g-1. The electrochemical impedance spectroscopy (EIS) of the sulfur cathodes suggests that the charge transfer resistance at the anode, (R act) is stable for the titania coated sulfur electrode in comparison to a continuous increase in R act for the uncoated electrode implying mitigation of polysulfide shuttling for the protected cathode. Stability in the cyclic voltammetry (CV) data for the first 5 cycles further confirms the polysulfide containment in the titania coated cathode while the uncoated sulfur electrode shows significant irreversibility in the CV with considerable shifting of the voltage peak positions. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) studies confirm the adsorption of soluble polysulfides by mesoporous titania.

2.
Nat Commun ; 7: 11857, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27282871

ABSTRACT

Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

3.
Nanotechnology ; 27(23): 235404, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27125437

ABSTRACT

Degradation of metal-organic halide perovskites when exposed to ambient conditions is a crucial issue that needs to be addressed for commercial viability of perovskite solar cells (PSCs). Here, a concept of encapsulating CH3NH3PbI3 perovskite crystals with a multi-functional graphene-polyaniline (PANI) composite coating to protect the perovskite against degradation from moisture, oxygen and UV light is presented. Hole-conducting polymers containing 2D layered sheet materials are presented here as multi-functional materials with oxygen and moisture impermeability. Specific studies involving PANI and graphene composites as coatings for perovskite crystals exhibited resistance to moisture and oxygen under continued exposure to UV and visible light. Most importantly, no perovskite degradation was observed even after 96 h of exposure of the PSCs to extremely high humidity (99% relative humidity). Our observations and results on perovskite protection with graphene/conducting polymer composites open up opportunities for glove-box-free and atmospheric processing of PSCs.

4.
Phys Chem Chem Phys ; 18(12): 8468-78, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26935818

ABSTRACT

Cubic perovskite BaSnO3 (BSO) is an important photoelectron transporting material due to its electronic structure that competes with TiO2 in dye-sensitized solar cells (DSCs). Separately, BSO/TiCl4 treated and BSO/scattering layer photoelectrodes have been used in DSCs that effectively increase the photoexcited charge carriers collection resulting in superior photovoltaic performance. In the present work, the different TiCl4 treatment time (1, 3 and 5 min), different scattering layer (tetragonal anatase TiO2 and hexagonal wurtzite ZnO) and different combinations thereof are successfully used on BSO nanocuboids/nanoparticle morphological structure photoelectrodes, and then we systematically inspected their performance in DSCs. Under the optimized conditions, a power conversion efficiency (PCE) of 3.88% is obtained by a BSO/TiCl4 treated photoanode. Furthermore, the BSO photoanodes made using a scattering layer such as anatase TiO2 and hexagonal ZnO i.e., BSO/anatase TiO2 and BSO/hexagonal ZnO, exhibited PCEs of 1.14% and 1.25% respectively. In the end, one of the highest PCEs (5.68%) was achieved using BSO/TiCl4 treated/TiO2 scattering layer photoanode. Another photoelectrode such as BSO/TiCl4 treated/ZnO scattering layer exhibited a PCE of 4.28% that is also higher than the BSO/TiCl4 treated/BSO scattering layer photoanodes. Electron lifetime versus current density studies illustrate the stability of the BSO photoelectrode in DSCs. From the observed results, it is realized that BSO is one of the most important future technological materials.

6.
Chem Rev ; 115(24): 13408-46, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26619209

ABSTRACT

Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.

7.
Sci Rep ; 5: 10530, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26001216

ABSTRACT

In order to make fast-charging batteries a reality for electric vehicles, durable, more energy dense and high-current density resistant anodes need to be developed. With such purpose, a low lithiation potential of 0.2 V vs. Li/Li(+) for MoO3 nanoplatelet arrays is reported here for anodes in a lithium ion battery. The composite material here presented affords elevated charge capacity while at the same time withstands rapid cycling for longer periods of time. Li2MoO4 and Li(1.333)Mo(0.666)O2 were identified as the products of lithiation of pristine MoO3 nanoplatelets and silicon-decorated MoO3, respectively, accounting for lower than previously reported lithiation potentials. MoO3 nanoplatelet arrays were deposited using hot-wire chemical vapor deposition. Due to excellent voltage compatibility, composite lithium ion battery anodes comprising molybdenum oxide nanoplatelets decorated with silicon nanoparticles (0.3% by wt.) were prepared using an ultrasonic spray. Silicon decorated MoO3 nanoplatelets exhibited enhanced capacity of 1037 mAh g(-1) with exceptional cyclability when charged/discharged at high current densities of 10 A g(-1).

8.
ACS Appl Mater Interfaces ; 6(17): 14923-30, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25110937

ABSTRACT

Recent studies focusing on enhancing the thermoelectric performance of metal oxides were primarily motivated by their low cost, large availability of the component elements in the earth's crust, and their high stability. So far, these studies indicate that n-type materials, such as ZnO, have much lower thermoelectric performance than their p-type counterparts. Overcoming this limitation requires precisely tuning the thermal and electrical transport through n-type metal oxides. One way to accomplish this is through the use of optimally doped bulk assemblies of ZnO nanowires. In this study, the thermoelectric properties of n-type aluminum and gallium dually doped bulk assembles of ZnO nanowires were determined. The results indicated that a high zT of 0.6 at 1000 °C, the highest experimentally observed for any n-type oxide, is possible. The high performance is attributed to the tailoring of the ZnO phase composition, nanostructuring of the material, and Zn-III band hybridization-based resonant scattering.

9.
Nano Lett ; 13(6): 2423-30, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23668724

ABSTRACT

We report the phase transformation of hematite (α-Fe2O3) single crystal nanowires to crystalline FeS nanotubes using sulfurization with H2S gas at relatively low temperatures. Characterization indicates that phase pure hexagonal FeS nanotubes were formed. Time-series sulfurization experiments suggest epitaxial growth of FeS as a shell layer on hematite. This is the first report of hollow, crystalline FeS nanotubes with NiAs structure and also on the Kirkendall effect in solid-gas reactions with nanowires involving sulfurization.

10.
Chem Commun (Camb) ; 48(90): 11070-2, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23019569

ABSTRACT

Sub-oxide-to-metallic highly-crystalline nanowires with uniformly distributed nanopores in the 3 nm range have been synthesized by a unique combination of the plasma oxidation, re-deposition and electron-beam reduction. Electron beam exposure-controlled oxide → sub-oxide → metal transition is explained using a non-equilibrium model.

11.
Nanoscale ; 4(20): 6269-75, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22968333

ABSTRACT

Here, we show that GaN nanowires (diameter <30 nm) can be used as strain relaxing substrates for the heteroepitaxial growth of stable In(x)Ga(1-x)N alloys of controlled composition and thickness. Thinner nanowires with their smaller interfacial area reduce the heteroepitaxial stress. Also, the limited adatom diffusion length scales on the thinner nanowires aid in reducing the kinetic segregation effects. In addition to being single crystal templates for heteroepitaxial growth, these thick single crystal overlayers on nanowire substrates can provide suitable architectures for photoelectrochemical applications. The stability and crystallinity of the In(x)Ga(1-x)N layers are preserved by the nanowires acting as compliant substrates. Photoelectrochemical water splitting requires In(x)Ga(1-x)N alloys with a 2.2-1.6 eV band gap (i.e. 0.45 < x < 0.65) and 150-200 nm film thickness for efficient light absorption and carrier generation. At such compositions, the In(x)Ga(1-x)N alloys are inherently unstable, the thickness-dependent stress builds up during the commonly employed heteroepitaxial growth methods, and adds to the instability causing phase segregation and property degradation. A dependence of the growth morphology on the GaN nanowire growth orientation was observed and a growth mechanism is presented for the observed orientation dependent growth on a-plane and c-plane GaN nanowires. Photoactivity of GaN and In(x)Ga(1-x)N films on GaN nanowires is also investigated which shows a distinct difference attributable to GaN and In(x)Ga(1-x)N, demonstrating the advantages of using nanowires as strain relaxing substrates.

12.
Nanotechnology ; 23(19): 194009, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22539110

ABSTRACT

Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity (~0.38 mA cm(-2) at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 µm Fe(1-x)O) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1­5 µm interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

13.
Nano Lett ; 12(4): 1784-8, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22432855

ABSTRACT

In this study, vertical nanowire arrays of MoO(3-x) grown on metallic substrates with diameters of ~90 nm show high-capacity retention of ~630 mAhg(-1) for up to 20 cycles at 50 mAg(-1) current density. Particularly, they exhibit a capacity retention of ~500 mAhg(-1) in the voltage window of 0.7-0.1 V, much higher than the theoretical capacity of graphite. In addition, 10 nm Si-coated MoO(3-x) nanowire arrays have shown a capacity retention of ~780 mAhg(-1), indicating that hybrid materials are the next generation materials for lithium ion batteries.

14.
Nano Lett ; 11(10): 4168-75, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21894935

ABSTRACT

We synthesize vertically oriented core-shell nanowires with substoichiometric MoO(3) cores of ∼20-50 nm and conformal MoS(2) shells of ∼2-5 nm. The core-shell architecture, produced by low-temperature sulfidization, is designed to utilize the best properties of each component material while mitigating their deficiencies. The substoichiometric MoO(3) core provides a high aspect ratio foundation and enables facile charge transport, while the conformal MoS(2) shell provides excellent catalytic activity and protection against corrosion in strong acids.

15.
Nano Lett ; 9(2): 612-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19159325

ABSTRACT

In this report, we present a simple and generic concept involving metal nanoclusters supported on metal oxide nanowires as stable and high capacity anode materials for Li-ion batteries. Specifically, SnO(2) nanowires covered with Sn nanoclusters exhibited an exceptional capacity of >800 mAhg(-1) over hundred cycles with a low capacity fading of less than 1% per cycle. Post lithiation analyses after 100 cycles show little morphological degradation of the hybrid nanowires. The observed, enhanced stability with high capacity retention is explained with the following: (a) the spacing between Sn nanoclusters on SnO(2) nanowires allowed the volume expansion during Li alloying and dealloying; (b) high available surface area of Sn nanoclusters for Li alloying and dealloying; and (c) the presence of Sn nanoclusters on SnO(2) allowed reversible reaction between Sn and Li(2)O to produce both Sn and SnO phases.

17.
J Am Chem Soc ; 130(39): 12944-52, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18771263

ABSTRACT

Charge transfer between diamond and an electrochemical redox couple in an adsorbed water film has recently been shown to pin the Fermi level in hydrogen-terminated diamond. Here we show that this effect is a more general phenomenon and influences the properties of other semiconductors when the band lineup between the ambient and electronic states in the semiconductor is appropriate. We find that the luminescent intensities from GaN and ZnO change in different, but predictable, ways when exposed to HCl and NH3 vapors in humid air. The effect is reversible and has been observed on single crystals, nanowires, flakes, and powders. These observations are explained by electron exchange between the oxygen electrochemical redox couple in an adsorbed water film and electronic states in the semiconductor. This effect can take place in parallel with other processes such as defect formation, chemisorption, and surface reconstruction and may play an important, but previously unrecognized, role when electronic and optical measurements are made in air.

18.
Small ; 3(5): 890-6, 2007 May.
Article in English | MEDLINE | ID: mdl-17415736

ABSTRACT

A scalable and versatile method for the large-scale synthesis of tungsten trioxide nanowires and their arrays on a variety of substrates, including amorphous quartz and fluorinated tin oxide, is reported. The synthesis involves the chemical-vapor transport of metal oxide vapor-phase species using air or oxygen flow over hot filaments onto substrates kept at a distance. The results show that the density of the nanowires can be varied from 10(6)-10(10) cm(-2) by varying the substrate temperature. The diameter of the nanowires ranges from 100-20 nm. The results also show that variations in oxygen flow and substrate temperature affect the nanowire morphology from straight to bundled to branched nanowires. A thermodynamic model is proposed to show that the condensation of WO(2) species primarily accounts for the nucleation and subsequent growth of the nanowires, which supports the hypothesis that the nucleation of nanowires occurs through condensation of suboxide WO(2) vapor-phase species. This is in contrast to the expected WO(3) vapor-phase species condensation into WO(3) solid phase for nanoparticle formation. The as-synthesized nanowires are shown to form stable dispersions compared to nanoparticles in various organic and inorganic solvents.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Oxides/chemistry , Titanium/chemistry , Tungsten/chemistry , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Transition Elements/chemistry
19.
Nano Lett ; 7(3): 626-31, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17324001

ABSTRACT

We utilized time-integrated and time-resolved photoluminescence of a-axis and c-axis gallium nitride nanowires to elucidate the origin of the blue-shifted ultraviolet photoluminescence in a-axis GaN nanowires relative to c-axis GaN nanowires. We attribute this blue-shifted ultraviolet photoluminescence to emission from surface trap states as opposed to previously proposed causes such as strain effects or built-in polarization. These results demonstrate the importance of accounting for surface effects when considering ultraviolet optoelectronic devices based on GaN nanowires.

20.
J Phys Chem B ; 110(37): 18351-7, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970457

ABSTRACT

In this paper, we provide a theoretical basis using thermodynamic stability analysis for explaining the spontaneous nucleation and growth of a high density of 1-D structures of a variety of materials from low-melting metals such as Ga, In, or Sn. The thermodynamic stability analysis provides a theoretical estimate of the extent of supersaturation of solute species in molten metal solvent. Using the extent of maximum supersaturation, the size and density of critical nucleus were estimated and compared with experimental results using nucleation and growth of Ge nanowires using Ga droplets. The consistency of the proposed model is validated with the size and density of the resulting nanowires as a function of the synthesis temperature and droplet size. Both the experimental evidence and the theoretical model predictions point that the diameters of the resulting nanowires decrease with the lowering of synthesis temperatures and that the nucleation density decreases with the size of metal droplet diameter and increasing synthesis temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...