Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16693-16707, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809246

ABSTRACT

Methyl carboxylate esters promote the formation of dimethyl ether (DME) from the dehydration of methanol in H-ZSM-5 zeolite. We employ a multilevel quantum method to explore the possible associative and dissociative mechanisms in the presence, and absence, of six methyl ester promoters. This hybrid method combines density functional theory, with dispersion corrections (DFT-D3), for the full periodic system, with second-order Møller-Plesset perturbation theory (MP2) for small clusters representing the reaction site, and coupled cluster with single, double, and perturbative triple substitution (CCSD(T)) for the reacting molecules. The calculated adsorption enthalpy of methanol, and reaction enthalpies of the dehydration of methanol to DME within H-ZSM-5, agree with experiment to within chemical accuracy (∼4 kJ mol-1). For the promoters, a reaction pathway via an associative mechanism gives lower overall reaction enthalpies and barriers compared to the reaction with methanol only. Each stage of this mechanism is explored and related to experimental data. We provide evidence that suggests the promoter's adsorption to the Brønsted acid site is the most important factor dictating its efficiency.

2.
Angew Chem Int Ed Engl ; 62(52): e202314274, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37955591

ABSTRACT

Cobalt-based catalysts are well-known to convert syngas into a variety of Fischer-Tropsch (FTS) products depending on the various reaction parameters, in particular particle size. In contrast, the reactivity of these particles has been much less investigated in the context of CO2 hydrogenation. In that context, Surface organometallic chemistry (SOMC) was employed to synthesize highly dispersed cobalt nanoparticles (Co-NPs) with particle sizes ranging from 1.6 to 3.0 nm. These SOMC-derived Co-NPs display significantly different catalytic performances under CO2 hydrogenation conditions: while the smallest cobalt nanoparticles (1.6 nm) catalyze mainly the reverse water-gas shift (rWGS) reaction, the larger nanoparticles (2.1-3.0 nm) favor the expected methanation activity. Operando X-ray absorption spectroscopy shows that the smaller cobalt particles are fully oxidized under CO2 hydrogenation conditions, while the larger ones remain mostly metallic, paralleling the observed difference of catalytic performances. This fundamental shift of selectivity, away from methanation to reverse water-gas shift for the smaller nanoparticles is noteworthy and correlates with the formation of CoO under CO2 hydrogenation conditions.

3.
J Mol Graph Model ; 125: 108606, 2023 12.
Article in English | MEDLINE | ID: mdl-37660615

ABSTRACT

Interactive molecular dynamics simulation in virtual reality (iMD-VR) is emerging as a promising technique in molecular science. Here, we demonstrate its use in a range of fifteen applications in materials science and heterogeneous catalysis. In this work, the iMD-VR package Narupa is used with the MD package, DL_POLY [1]. We show how iMD-VR can be used to: (i) investigate the mechanism of lithium fast ion conduction by directing the formation of defects showing that vacancy transport is favoured over interstitialcy mechanisms, and (ii) guide a molecule through a zeolite pore to explore diffusion within zeolites, examining in detail the motion of methyl n-hexanoate in H-ZSM-5 zeolite and identifying bottlenecks restricting diffusion. iMD-VR allows users to manipulate these systems intuitively, to drive changes in them and observe the resulting changes in structure and dynamics. We make these simulations available, as a resource for both teaching and research. All simulation files, with videos, can be found online (https://doi.org/10.5281/zenodo.8252314) and are provided as open-source material.


Subject(s)
Molecular Dynamics Simulation , Virtual Reality , Catalysis , Diffusion , Esters , Lithium
4.
J Am Chem Soc ; 145(23): 12651-12662, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37256723

ABSTRACT

The olefin metathesis activity of silica-supported molybdenum oxides depends strongly on metal loading and preparation conditions, indicating that the nature and/or amounts of the active sites vary across compositionally similar catalysts. This is illustrated by comparing Mo-based (pre)catalysts prepared by impregnation (2.5-15.6 wt % Mo) and a model material (2.3 wt % Mo) synthesized via surface organometallic chemistry (SOMC). Analyses of FTIR, UV-vis, and Mo K-edge X-ray absorption spectra show that these (pre)catalysts are composed predominantly of similar isolated Mo dioxo sites. However, they exhibit different reaction properties in both liquid and gas-phase olefin metathesis with the SOMC-derived catalyst outperforming a classical catalyst of a similar Mo loading by ×1.5-2.0. Notably, solid-state 95Mo NMR analyses leveraging state-of-the-art high-field (28.2 T) measurement conditions resolve four distinct surface Mo dioxo sites with distributions that depend on the (pre)catalyst preparation methods. The intensity of a specific deshielded 95Mo NMR signal, which is most prominent in the SOMC-derived catalyst, is linked to reducibility and catalytic activity. First-principles calculations show that 95Mo NMR parameters directly manifest the local strain and coordination environment: acute (SiO-Mo(O)2-OSi) angles and low coordination numbers at Mo lead to highly deshielded 95Mo chemical shifts and small quadrupolar coupling constants, respectively. Natural chemical shift analyses relate the 95Mo NMR signature of strained species to low LUMO energies, which is consistent with their high reducibility and corresponding reactivity. The 95Mo chemical shifts of supported Mo dioxo sites are thus linked to their specific electronic structures, providing a powerful descriptor for their propensity toward reduction and formation of active sites.

5.
JACS Au ; 2(3): 777-786, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373213

ABSTRACT

Molecularly defined and classical heterogeneous Mo-based metathesis catalysts are shown to display distinct and unexpected reactivity patterns for the metathesis of long-chain α-olefins at low temperatures (<100 °C). Catalysts based on supported Mo oxo species, whether prepared via wet impregnation or surface organometallic chemistry (SOMC), exhibit strong activity dependencies on the α-olefin chain length, with slower reaction rates for longer substrate chain lengths. In contrast, molecular and supported Mo alkylidenes are highly active and do not display such dramatic dependence on the chain length. State-of-the-art two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) spectroscopy analyses of postmetathesis catalysts, complemented by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics calculations, evidence that the activity decrease observed for supported Mo oxo catalysts relates to the strong adsorption of internal olefin metathesis products because of interactions with surface Si-OH groups. Overall, this study shows that in addition to the nature and the number of active sites, the metathesis rates and the overall catalytic performance depend on product desorption, even in the liquid phase with nonpolar substrates. This study further highlights the role of the support and active site composition and dynamics on activity as well as the need for considering adsorption in catalyst design.

6.
Chem Commun (Camb) ; 55(92): 13804-13807, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31633709

ABSTRACT

Methyl carboxylate esters can be used as additives to promote the zeolite catalysed formation of dimethly ether (DME) from methanol. By taking advantage of the well-known confinement effect in combination with further functionalisation the potency of the promoter can be markedly enhanced, giving significant increases in DME yield at promoter concentrations as low as 10 ppm relative to methanol. The promotion is readily reversible and promoter concentration can be used to fine tune the zeolite productivity to DME.

7.
Dalton Trans ; 46(9): 2821-2828, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28177030

ABSTRACT

Absorption of carbon monoxide by copper(i)-containing ionic liquids, [Cnmim][CuX2] (Cnmim = 1-alkyl-3-methylimidazolium, n = 2, 4, 6, X = Cl, Br, I) has been investigated using in situ high pressure infrared spectroscopy. For each liquid, observation of a ν(CO) band in the region 2075-2090 cm-1 indicates the formation of copper(i) monocarbonyl complexes, assigned as [Cu(CO)X2]-. The rate of growth and equilibrium intensity of the ν(CO) absorption is dependent on applied CO pressure. Binding of CO is reversible such that complete desorption occurs rapidly on heating above 100 °C and the liquids are robust over multiple gas absorption/desorption cycles. For the series of [C6mim][CuX2] salts the CO absorption ability follows the order Cl ≥ Br ≫ I. Selective absorption of CO from CO/H2 and CO/N2 gas mixtures is demonstrated by measuring the changes in headspace CO content upon absorption and desorption of gas. For [C6mim][CuCl2], a single absorb-vent-desorb cycle yields product gas containing ∼95% CO starting from a 1 : 1 CO/N2 mixture, increasing to ∼98% CO starting from a 4 : 1 CO/N2 mixture. This is particularly promising in view of the similar boiling points of CO and N2 that hinders their separation by cryogenic distillation.

8.
Dalton Trans ; 42(47): 16538-46, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24071892

ABSTRACT

The reactions of water with a number of iridium(III) complexes relevant to the mechanism for catalytic methanol carbonylation are reported. The iridium acetyl, [Ir(CO)2I3(COMe)](-), reacts with water under mild conditions to release CO2 and CH4, rather than the expected acetic acid. Isotopic labeling and kinetic experiments are consistent with a mechanism involving nucleophilic attack by water on a terminal CO ligand of [Ir(CO)2I3(COMe)](-) to give an (undetected) hydroxycarbonyl species. Subsequent decarboxylation and elimination of methane gives [Ir(CO)2I2](-). Similar reactions with water are observed for [Ir(CO)2I3Me](-), [Ir(CO)2(NCMe)I2(COMe)] and [Ir(CO)3I2Me] with the neutral complexes exhibiting markedly higher rates. The results demonstrate that CO2 formation during methanol carbonylation is not restricted to the conventional water gas shift mechanism mediated by [Ir(CO)2I4](-) or [Ir(CO)3I3], but can arise directly from key organo-iridium(III) intermediates in the carbonylation cycle. An alternative pathway for methane formation not involving the intermediacy of H2 is also suggested. A mechanism is proposed for the conversion MeOH + CO → CO2 + CH4, which may account for the similar rates of formation of the two gaseous by-products during iridium-catalysed methanol carbonylation.

9.
Dalton Trans ; 40(5): 1031-3, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21180702

ABSTRACT

The first square planar rhodium(I) complexes containing the 6,6'-dihydroxy-2,2'-bipyridine ligand have been prepared. The complexes form molecular wires in the solid state and are active catalysts for the carbonylation of methyl acetate.

11.
Chem Commun (Camb) ; (24): 2800-2, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18688315

ABSTRACT

The use of ligands with proximate hydrogen bonding substituents in the oxidation of platinum(II) dimethyl complexes with H2O2 leads to the exclusive formation of an unusual cis-dihydroxo platinum(IV) complex, which can dehydrate to form a trinuclear metalla-azacrown complex.

12.
J Am Chem Soc ; 130(36): 11988-95, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18698767

ABSTRACT

InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 degrees C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of adamantane the selectivity of this transformation can be increased up to 60%. The lighter branched alkanes isobutane and isopentane also react with methanol to generate triptane, while 2-methylpentane is converted into 2,3-dimethylpentane and other more highly branched species. Observations implicate a chain mechanism in which InI3 activates branched alkanes to produce tertiary carbocations which are in equilibrium with olefins. The latter react with a methylating species generated from methanol and InI3 to give the next-higher carbocation, which accepts a hydride from the starting alkane to form the homologated alkane and regenerate the original carbocation. Adamantane functions as a hydride transfer agent and thus helps to minimize competing side reactions, such as isomerization and cracking, that are detrimental to selectivity.

13.
Inorg Chem ; 46(26): 11371-80, 2007 Dec 24.
Article in English | MEDLINE | ID: mdl-18047325

ABSTRACT

InI3 is able to catalyze the conversion of methanol to a mixture of hydrocarbons at 200 degrees C with one highly branched alkane, 2,2,3-trimethylbutane (triptane), being obtained in high selectivity. The mechanism for InI3-catalyzed reactions appears to be basically the same as that proposed for the previously studied ZnI2-catalyzed system in which sequential methylation of olefins is followed by competing reactions of the resulting carbocation: proton loss to give the next olefin vs hydride transfer to give the corresponding alkane. Although the reaction conditions and typical triptane yields achievable with ZnI2 and InI3 are quite similar, the two systems behave rather differently in a number of important particulars, including significant differences between the detailed product distributions. Most of the differences in behavior can be ascribed to the stronger Lewis acidity of InI3, including the ability to activate some alkanes, the higher activity for methylation of arenes, and the fact that methanol conversion can be observed at somewhat lower temperatures with InI3 than with ZnI2.

14.
J Am Chem Soc ; 129(16): 4919-24, 2007 Apr 25.
Article in English | MEDLINE | ID: mdl-17397162

ABSTRACT

The acid-catalyzed formation of carbon-carbon bonds from C1 precursors via CO insertion into chemisorbed methyl groups occurs selectively within eight-membered ring (8-MR) zeolite channels. This elementary step controls catalytic carbonylation rates of dimethyl ether (DME) to methyl acetate. The number of O-H groups within 8-MR channels was measured by rigorous deconvolution of the infrared bands for O-H groups in cation-exchanged and acid forms of mordenite (M,H-MOR) and ferrierite (H-FER) after adsorption of basic probe molecules of varying size. DME carbonylation rates are proportional to the number of O-H groups within 8-MR channels. Na+ cations selectively replaced protons within 8-MR channels and led to a disproportionate decrease in carbonylation turnover rates (per total H+). These conclusions are consistent with the low or undetectable rates of carbonylation on zeolites without 8-MR channels (H-BEA, H-FAU, H-MFI). Such specificity of methyl reactivity upon confinement within small channels appears to be unprecedented in catalysis by microporous solids, which typically select reactions by size exclusion of bulkier transition states.

16.
J Org Chem ; 71(23): 8907-17, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17081022

ABSTRACT

Methanol is converted to a mixture of hydrocarbons by reaction with zinc iodide at 200 degrees C with one highly branched alkane, 2,2,3-trimethylbutane (triptane), being obtained in surprisingly high selectivity. Mechanistic studies implicate a two-stage process, the first involving heterogeneously catalyzed formation of a carbon-carbon-bonded species, probably ethylene, that undergoes homogeneously catalyzed sequential cationic methylation to higher hydrocarbons. The first stage can be bypassed by addition of olefins, higher alcohols, or arenes, which act as initiators. Rationales for the particular activity of zinc iodide and for the selectivity to triptane are proposed.

19.
J Am Chem Soc ; 127(24): 8604-5, 2005 Jun 22.
Article in English | MEDLINE | ID: mdl-15954760

ABSTRACT

Alkane metathesis, a reaction catalyzed by the silica-supported tantalum hydride [(SiO)2Ta-H], 1, which transforms acyclic alkanes into their higher and lower homologues, was reported in 1997. New studies conducted in a continuous flow reactor in the case of propane indicate that, by varying the contact time, hydrogen and olefins are primary products. This crucial observation, as well as the known properties of tantalum alkyls to perform alpha-H or beta-H eliminations, supports the proposition of a new mechanism involving metallacyclobutane intermediates just like in olefin metathesis. The observed selectivities for linear and branched Cn+1 and Cn+2 products as well as the linear/branched ratio can be well-explained on the basis of the minimization of steric interactions between 1,2- or 1,3-substituents in the various tantallacyclobutane intermediates or during their formation. Hydrogen plays a specific role in the cleavage of metal alkyls to complete the catalytic cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...