Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med Sci ; 21(2): 372-379, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35173115

ABSTRACT

PURPOSE: To extract the status of hydrocephalus and other cerebrospinal fluid (CSF)-related diseases, a technique to characterize the cardiac- and respiratory-driven CSF motions separately under free breathing was developed. This technique is based on steady-state free precession phase contrast (SSFP-PC) imaging in combination with a Stockwell transform (S-transform). METHODS: 2D SSFP-PC at 3 T was applied to measure the CSF velocity in the caudal-cranial direction within a sagittal slice at the midline (N = 3) under 6-, 10-, and 16-s respiratory cycles and free breathing. The frequency-dependent window width of the S-transform was controlled by a particular scaling factor, which then converted the CSF velocity waveform into a spectrogram. Based on the frequency bands of the cardiac pulsation and respiration, as determined by the electrocardiogram (ECG) and respirator pressure sensors, Gaussian bandpass filters were applied to the CSF spectrogram to extract the time-domain cardiac- and respiratory-driven waveforms. RESULTS: The cardiac-driven CSF velocity component appeared in the spectrogram clearly under all respiratory conditions. The respiratory-driven velocity under the controlled respiratory cycles was observed as constant frequency signals, compared to a time-varying frequency signal under free breathing. When the widow width was optimized using the scale factor, the temporal change in the respiratory-driven CSF component was even more apparent under free breathing. CONCLUSION: Velocity amplitude variations and transient frequency changes of both cardiac- and respiratory-driven components were successfully characterized. These findings indicated that the proposed technique is useful for evaluating CSF motions driven by different cyclic forces.


Subject(s)
Heart , Magnetic Resonance Imaging , Cerebrospinal Fluid , Magnetic Resonance Imaging/methods , Microscopy, Phase-Contrast , Motion , Respiration
2.
Magn Reson Med Sci ; 20(4): 385-395, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-33551384

ABSTRACT

PURPOSE: The cardiac- and respiratory-driven components of cerebrospinal fluid (CSF) motion characteristics and bulk flow are not yet completely understood. Therefore, the present study aimed to characterize cardiac- and respiratory-driven CSF motions in the intracranial space using delay time, CSF velocity waveform correlation, and displacement. METHODS: Asynchronous two-dimensional phase-contrast at 3T was applied to measure the CSF velocity in the inferior-superior direction in a sagittal slice at the midline (N = 12) and an axial slice at the foramen magnum (N = 8). Volunteers were instructed to engage in six-second respiratory cycles. The calculated delay time and correlation coefficients of the cardiac- and respiratory-driven velocity waveforms, separated in the frequency domain, were applied to evaluate the propagation of the CSF motion. The cardiac- and respiratory-driven components of the CSF displacement and motion volume were calculated during diastole and systole, and during inhalation and exhalation, respectively. The cardiac- and respiratory-driven components of the velocity, correlation, displacement, and motion volume were compared using an independent two-sample t-test. RESULTS: The ratio of the cardiac-driven CSF velocity to the sum of the cardiac- and respiratory-driven CSF velocities was higher than the equivalent respiratory-driven ratio for all cases (P < 0.01). Delay time and correlation maps demonstrated that the cardiac-driven CSF motion propagated more extensively than the respiratory-driven CSF motion. The correlation coefficient of the cardiac-driven motion was significantly higher in the prepontine (P < 0.01), the aqueduct, and the fourth ventricle (P < 0.05). The respiratory-driven displacement and motion volume were significantly greater than the cardiac-driven equivalents for all observations (P < 0.01). CONCLUSION: The correlation mapping technique characterized the cardiac- and respiratory-driven CSF velocities and their propagation properties in the intracranial space. Based on these findings, cardiac-driven CSF velocity is greater than respiratory-induced velocity, but the respiratory-driven velocity might displace farther.


Subject(s)
Heart , Magnetic Resonance Imaging , Cerebral Ventricles , Cerebrospinal Fluid/diagnostic imaging , Heart/diagnostic imaging , Humans , Microscopy, Phase-Contrast , Motion
3.
Magn Reson Med Sci ; 17(2): 151-160, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29187679

ABSTRACT

PURPOSE: A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. METHODS: A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). RESULTS: The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P < 0.01) in the mean correlation coefficient between the young, healthy group and the other two groups. A significant difference (P < 0.05) was also recognized in standard deviation of the correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. CONCLUSION: The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.


Subject(s)
Cerebrospinal Fluid/physiology , Heart/physiology , Pulsatile Flow/physiology , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Retrospective Studies
4.
Fluids Barriers CNS ; 14(1): 25, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28950883

ABSTRACT

BACKGROUND: A classification of cardiac- and respiratory-driven components of cerebrospinal fluid (CSF) motion has been demonstrated using echo planar imaging and time-spatial labeling inversion pulse techniques of magnetic resonance imaging (MRI). However, quantitative characterization of the two motion components has not been performed to date. Thus, in this study, the velocities and displacements of the waveforms of the two motions were quantitatively evaluated based on an asynchronous two-dimensional (2D) phase-contrast (PC) method followed by frequency component analysis. METHODS: The effects of respiration and cardiac pulsation on CSF motion were investigated in 7 healthy subjects under guided respiration using asynchronous 2D-PC 3-T MRI. The respiratory and cardiac components in the foramen magnum and aqueduct were separated, and their respective fractions of velocity and amount of displacement were compared. RESULTS: For velocity in the Sylvian aqueduct and foramen magnum, the fraction attributable to the cardiac component was significantly greater than that of the respiratory component throughout the respiratory cycle. As for displacement, the fraction of the respiratory component was significantly greater than that of the cardiac component in the aqueduct regardless of the respiratory cycle and in the foramen magnum in the 6- and 10-s respiratory cycles. There was no significant difference between the fractions in the 16-s respiratory cycle in the foramen magnum. CONCLUSIONS: To separate cardiac- and respiratory-driven CSF motions, asynchronous 2D-PC MRI was performed under respiratory guidance. For velocity, the cardiac component was greater than the respiratory component. In contrast, for the amount of displacement, the respiratory component was greater.


Subject(s)
Cerebrospinal Fluid/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Female , Healthy Volunteers , Heart/physiology , Humans , Male , Motion , Pulsatile Flow/physiology , Respiration , Young Adult
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1232-1235, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268547

ABSTRACT

To classify the cardiac- and respiratory-driven cerebrospinal fluid (CSF) motions, asynchronous 2D phase contrast (PC) of magnetic resonance imaging (MRI) with 217 ms time resolution in conjunction with power and frequency mapping was performed for 7 healthy subjects under respiration guidance. In the frequency domain, the cardiac-driven motion was at around 1.29±0.21 Hz and respiratory-driven motion was at 0.16±0.01 Hz under 6 sec respiratory cycle. Two different techniques were proposed for characterizing the motions; one was power-map (P-map) depicting integrated power spectrum in a selected band, and the other was frequency-map (F-map) delineating the frequency of maximum peak in power spectral density (PSD). These maps visualized the anatomical distributions of the two motions. Portions of the cardiac- and respiratory-driven CSF motions in the spinal subarachnoid space were 58.1±22.2 and 9.50±3.83 %, respectively. Power and frequency mapping clearly classified the cardiac-driven and respiratory-driven CSF motions.


Subject(s)
Cerebrospinal Fluid/diagnostic imaging , Magnetic Resonance Imaging , Microscopy, Phase-Contrast , Heart , Humans , Movement , Respiration
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3867-3870, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269130

ABSTRACT

To investigate spatial distribution properties of the cardiac- and respiratory-driven cerebrospinal fluid (CSF) motions in the intracranial space, correlation mapping technique was conducted. Time series of CSF velocity were acquired in 7 healthy subjects of 26±5 years old under by asynchronous 2-dimensional phase contrast (2D-PC) method with 217-msec temporal resolution. The delay time and maximum correlation maps of the cardiac- and respiratory-driven CSF motions demonstrated clear differences in the propagation properties. When the reference region was set at anterior spinal subarachnoid space, the maximum correlation coefficients in the case of 6-sec respiratory period were 0.91±0.05 for cardiac-driven and 0.78±0.08 for respiratory-driven. They were 0.90±0.06 and 0.81±0.06 in the case of 10-sec period. The cardiac- and respiratory CSF motions differently distributed in intracranial space.


Subject(s)
Cerebrospinal Fluid/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Subarachnoid Space , Adult , Female , Fourier Analysis , Healthy Volunteers , Heart , Humans , Male , Motion , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...