Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e98535, 2014.
Article in English | MEDLINE | ID: mdl-24901349

ABSTRACT

Populations of mesopredators (mid-sized mammalian carnivores) are expanding in size and range amid declining apex predator populations and ever-growing human presence, leading to significant ecological impacts. Despite their obvious importance, population dynamics have scarcely been studied for most mesopredator species. Information on basic population parameters and processes under a range of conditions is necessary for managing these species. Here we investigate survival, recruitment, and population growth rate of a widely distributed and abundant mesopredator, the northern raccoon (Procyon lotor), using Pradel's temporal symmetry models and >6 years of monthly capture-mark-recapture data collected in a protected area. Monthly apparent survival probability was higher for females (0.949, 95% CI = 0.936-0.960) than for males (0.908, 95% CI = 0.893-0.920), while monthly recruitment rate was higher for males (0.091, 95% CI = 0.078-0.106) than for females (0.054, 95% CI = 0.042-0.067). Finally, monthly realized population growth rate was 1.000 (95% CI = 0.996-1.004), indicating that our study population has reached a stable equilibrium in this relatively undisturbed habitat. There was little evidence for substantial temporal variation in population growth rate or its components. Our study is one of the first to quantify survival, recruitment, and realized population growth rate of raccoons using long-term data and rigorous statistical models.


Subject(s)
Raccoons/physiology , Animals , Female , Florida , Male , Population Density , Population Dynamics
2.
Ecol Appl ; 21(6): 2324-33, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939064

ABSTRACT

The relative influence of habitat loss vs. habitat fragmentation per se (the breaking apart of habitat) on species distribution and abundance is a topic of debate. Although some theoretical studies predict a strong negative effect of fragmentation, consensus from empirical studies is that habitat fragmentation has weak effects compared with habitat loss and that these effects are as likely to be positive as negative. However, few empirical investigations of this issue have been conducted on tropical or wide-ranging species that may be strongly influenced by changes in patch size and edge that occur with increasing fragmentation. We tested the relative influence of habitat loss and fragmentation by examining occupancy of forest patches by 20 mid- and large-sized Neotropical mammal species in a fragmented landscape of northern Guatemala. We related patch occupancy of mammals to measures of habitat loss and fragmentation and compared the influence of these two factors while controlling for patch-level variables. Species responded strongly to both fragmentation and loss, and response to fragmentation generally was negative. Our findings support previous assumptions that conservation of large mammals in the tropics will require conservation strategies that go beyond prevention of habitat loss to also consider forest cohesion or other aspects of landscape configuration.


Subject(s)
Ecosystem , Mammals/physiology , Tropical Climate , Animals , Demography
3.
PLoS Biol ; 2(12): e442, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15583716

ABSTRACT

Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.


Subject(s)
Tigers/genetics , Alleles , Animals , Bayes Theorem , Biological Evolution , Cluster Analysis , Conservation of Natural Resources , DNA Primers/chemistry , DNA, Mitochondrial/metabolism , Genetic Variation , Genotype , Geography , Haplotypes , Major Histocompatibility Complex/genetics , Microsatellite Repeats , Models, Biological , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...