Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 1(5): 287-294, 2015 May 11.
Article in English | MEDLINE | ID: mdl-33429577

ABSTRACT

We demonstrated inkjet printing of large-scale dual-type encapsulated bacterial cell arrays for prospective multiplexing sensing. The dual cell arrays were constructed on the basis of two types of bioengineered E. coli cells hosting fluorescent reporters (green-GFPa1 and red-turboRFP) capable of detecting different target chemicals. The versatility of inkjet printing allows for the fabrication of uniform multilayered confined structures composed of silk ionomers that served as nests for in-printing different cells. Furthermore, sequential encapsulation of "red" and "green" cells in microscopic silk nest arrays with the preservation of their function allowed for facile confinement of cells into microscopic silk nests, where cells retained dual red-green response to mixed analyte environment. Whole-cell dual arrays immobilized in microscopic biocompatible silk matrices were readily activated after prolonged storage (up to 3 months, ambient conditions), showing red-green pattern and demonstrating an effective prototype of robust and long-living multiplexed biosensors for field applications.

2.
Biomacromolecules ; 15(4): 1428-35, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24605757

ABSTRACT

An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 µm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation.


Subject(s)
Biocompatible Materials/chemistry , Biotechnology/methods , Fibroins/chemistry , Cells, Immobilized , Escherichia coli , Polyglutamic Acid/chemistry , Polylysine/chemistry , Silk/chemistry
3.
ACS Appl Mater Interfaces ; 4(6): 3102-10, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22568677

ABSTRACT

We present the facile fabrication of hydrogen-bonded layer-by-layer (LbL) microscopic dot arrays with encapsulated dye compounds. We demonstrate patterned encapsulation of Rhodamine dye as a model compound within poly(vinylpyrrolidone)/poly(methacrylic acid) (PVPON/PMAA) LbL dots constructed without an intermediate washing step. The inkjet printing technique improves encapsulation efficiency, reduces processing time, facilitates complex patterning, and controls lateral and vertical dimensions with diameters ranging from 130 to 35 µm (mostly controlled by the droplet size and the substrate hydrophobicity) and thickness of several hundred nanometers. The microscopic dots composed of hydrogen-bonded PVPON/PMAA components are also found to be stable in acidic solution after fabrication. This facile, fast, and sophisticated inkjet encapsulation method can be applied to other systems for fast fabrication of large-scale, high-resolution complex arrays of dye-encapsulated LbL dots.

4.
Langmuir ; 27(17): 10730-8, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21790125

ABSTRACT

We report on the growth of gold nanoparticles in polystyrene/poly(2-vinyl pyridine) (PS/P2VP) star-shaped block copolymer monolayers. These amphiphilic PS(n)P2VP(n) heteroarm star copolymers differ in molecular weight (149,000 and 529,000 Da) and the number of arms (9 and 28). Langmuir-Blodgett (LB) deposition was utilized to control the spatial arrangement of P2VP arms and their ability to reduce gold nanoparticles. The PS(n)P2VP(n) monolayer acted as a template for gold nanoparticle growth because of the monolayer's high micellar stability at the liquid-solid interface, uniform domain morphology, and ability to adsorb Au ions from the water subphase. UV-vis spectra and AFM and TEM images confirmed the formation of individual gold nanoparticles with an average size of 6 ± 1 nm in the P2VP-rich outer phase. This facile strategy is critical to the formation of ultrathin polymer-gold nanocomposite layers over large surface areas with confined, one-sided positioning of gold nanoparticles in an outer P2VP phase at polymer-silicon interfaces.


Subject(s)
Gold/chemistry , Membranes, Artificial , Metal Nanoparticles/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Particle Size , Surface Properties
5.
J Am Chem Soc ; 133(24): 9592-606, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21591785

ABSTRACT

We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 µm × 10 µm) with much larger thickness reaching up to 1.0 µm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...