Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37055623

ABSTRACT

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Subject(s)
Taraxacum , Humans , T-Lymphocytes , Single-Cell Analysis
2.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100545

ABSTRACT

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Subject(s)
Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37986877

ABSTRACT

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

4.
Science ; 381(6659): eadd7564, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590359

ABSTRACT

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Subject(s)
Embryonic Development , Yolk Sac , Female , Humans , Pregnancy , Blood Coagulation/genetics , Macrophages , Yolk Sac/cytology , Yolk Sac/metabolism , Embryonic Development/genetics , Atlases as Topic , Gene Expression , Gene Expression Profiling , Hematopoiesis/genetics , Liver/embryology
5.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493756

ABSTRACT

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Subject(s)
Fetus , Lung , Humans , Cell Differentiation , Gene Expression Profiling , Lung/cytology , Organogenesis , Organoids , Atlases as Topic , Fetus/cytology
6.
Science ; 376(6597): eabo0510, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35549310

ABSTRACT

Single-cell genomics studies have decoded the immune cell composition of several human prenatal organs but were limited in describing the developing immune system as a distributed network across tissues. We profiled nine prenatal tissues combining single-cell RNA sequencing, antigen-receptor sequencing, and spatial transcriptomics to reconstruct the developing human immune system. This revealed the late acquisition of immune-effector functions by myeloid and lymphoid cell subsets and the maturation of monocytes and T cells before peripheral tissue seeding. Moreover, we uncovered system-wide blood and immune cell development beyond primary hematopoietic organs, characterized human prenatal B1 cells, and shed light on the origin of unconventional T cells. Our atlas provides both valuable data resources and biological insights that will facilitate cell engineering, regenerative medicine, and disease understanding.


Subject(s)
Immune System , Lymphocytes , Monocytes , Genomics , Humans , Immune System/embryology , Lymphocytes/metabolism , Monocytes/metabolism , Organ Specificity , RNA-Seq , Single-Cell Analysis
7.
J Exp Med ; 219(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35363256

ABSTRACT

MicroRNAs are critical regulators of gene expression controlling cellular processes including inflammation. We explored their role in the pathogenesis of inflammatory bowel disease (IBD) and identified reduced expression of miR-374a-5p in IBD monocytes that correlated with a module of up-regulated genes related to the inflammatory response. Key proinflammatory module genes, including for example TNFα, IL1A, IL6, and OSM, were inversely correlated with miR-374a-5p and were validated in vitro. In colonic biopsies, miR-374a-5p was again reduced in expression and inversely correlated with the same inflammatory module, and its levels predicted subsequent response to anti-TNF therapy. Increased miR-374a-5p expression was shown to control macrophage-driven inflammation by suppressing proinflammatory mediators and to reduce the capacity of monocytes to migrate and activate T cells. Our findings suggest that miR-374a-5p reduction is a central driver of inflammation in IBD, and its therapeutic supplementation could reduce monocyte-driven inflammation in IBD or other immune-mediated diseases.


Subject(s)
Colitis , Inflammatory Bowel Diseases , MicroRNAs , Humans , Inflammatory Bowel Diseases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Tumor Necrosis Factor Inhibitors
8.
Sci Adv ; 7(7)2021 02.
Article in English | MEDLINE | ID: mdl-33579697

ABSTRACT

We present INSIGHT [isothermal NASBA (nucleic acid sequence-based amplification) sequencing-based high-throughput test], a two-stage coronavirus disease 2019 testing strategy, using a barcoded isothermal NASBA reaction. It combines point-of-care diagnosis with next-generation sequencing, aiming to achieve population-scale testing. Stage 1 allows a quick decentralized readout for early isolation of presymptomatic or asymptomatic patients. It gives results within 1 to 2 hours, using either fluorescence detection or a lateral flow readout, while simultaneously incorporating sample-specific barcodes. The same reaction products from potentially hundreds of thousands of samples can then be pooled and used in a highly multiplexed sequencing-based assay in stage 2. This second stage confirms the near-patient testing results and facilitates centralized data collection. The 95% limit of detection is <50 copies of viral RNA per reaction. INSIGHT is suitable for further development into a rapid home-based, point-of-care assay and is potentially scalable to the population level.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , High-Throughput Nucleotide Sequencing , Point-of-Care Testing , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans
9.
Stem Cells ; 31(9): 1881-92, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712715

ABSTRACT

TNF, signaling through TNFR2, has been implicated in tissue repair, a process that in the heart may be mediated by activated resident cardiac stem cells (CSCs). The objective of our study is to determine whether ligation of TNFR2 can induce activation of resident CSCs in the setting of ischemic cardiac injury. We show that in human cardiac tissue affected by ischemia heart disease (IHD), TNFR2 is expressed on intrinsic CSCs, identified as c-kit(+)/CD45(-)/VEGFR2(-) interstitial round cells, which are activated as determined by entry to cell cycle and expression of Lin-28. Wild-type mouse heart organ cultures subjected to hypoxic conditions both increase cardiac TNF expression and show induced TNFR2 and Lin-28 expression in c-kit(+) CSCs that have entered cell cycle. These CSC responses are enhanced by exogenous TNF. TNFR2(-/-) mouse heart organ cultures subjected to hypoxia increase cardiac TNF but fail to induce CSC activation. Similarly, c-kit(+) CSCs isolated from mouse hearts exposed to hypoxia or TNF show induction of Lin-28, TNFR2, cell cycle entry, and cardiogenic marker, α-sarcomeric actin (α-SA), responses more pronounced by hypoxia in combination with TNF. Knockdown of Lin-28 by siRNA results in reduced levels of TNFR2 expression, cell cycle entry, and diminished expression of α-SA. We conclude that hypoxia-induced c-kit(+) CSC activation is mediated by TNF/TNFR2/Lin-28 signaling. These observations suggest that TNFR2 signaling in resident c-kit(+) CSCs induces cardiac repair, findings which provide further understanding of the unanticipated harmful effects of TNF blockade in human IHD.


Subject(s)
Cell Cycle , Myocardial Ischemia/pathology , Myocardium/pathology , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Stem Cells/cytology , Tumor Necrosis Factor-alpha/metabolism , Actins/metabolism , Animals , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cell Separation , Fluorescent Antibody Technique , Humans , In Situ Hybridization , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Organ Culture Techniques , RNA-Binding Proteins/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Up-Regulation/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Seizure ; 22(3): 174-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23273808

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of the ketogenic diet (KD) treatment of refractory childhood epilepsy in China and determine which children are more likely to respond. METHODS: Between 2004 and 2011, we prospectively enrolled 317 children with refractory epilepsy for the KD treatment in Shenzhen Children's Hospital and followed up for at least a year. Outcome was measured by seizure frequencies before and after the diet, change in anticonvulsant use and adverse effects. We also evaluated influences of different variables (starting age, duration of epilepsy and underlying conditions) on the outcome. RESULTS: Intent-to-treat analysis showed that after 3, 6 and 12 months, 62.8%, 42.0% and 24.3% remained on the diet, 35.0%, 26.2% and 18.6% showed >50% seizure reduction, including 20.8%, 13.6% and 10.7% seizure free, respectively. Starting age may influence efficacy. The ≥10 age group showed worse response than the <10 age group, though the difference was statistically significant (p=0.039) at 3 month only. Other variables such as duration of epilepsy at the start of the diet, seizure types and aetiologies showed no significant influence on efficacy. Frequently reported complications included GI disturbance, food refusal and hypoproteinaemia. CONCLUSIONS: The KD is a safe and efficacious therapy for intractable childhood epilepsy in Chinese children. The influence of age on efficacy is worth further investigation.


Subject(s)
Diet, Ketogenic/adverse effects , Epilepsy/diet therapy , Adolescent , Anticonvulsants/therapeutic use , Asian People , Child , Child, Preschool , China , Combined Modality Therapy/adverse effects , Epilepsy/drug therapy , Female , Humans , Infant , Longitudinal Studies , Male , Prospective Studies , Retreatment , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...