Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Nat Commun ; 14(1): 5706, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709767

ABSTRACT

GPR84 is a unique orphan G protein-coupled receptor (GPCR) that can be activated by endogenous medium-chain fatty acids (MCFAs). The signaling of GPR84 is largely pro-inflammatory, which can augment inflammatory response, and GPR84 also functions as a pro-phagocytic receptor to enhance phagocytic activities of macrophages. In this study, we show that the activation of GPR84 by the synthetic agonist 6-OAU can synergize with the blockade of CD47 on cancer cells to induce phagocytosis of cancer cells by macrophages. We also determine a high-resolution structure of the GPR84-Gi signaling complex with 6-OAU. This structure reveals an occluded binding pocket for 6-OAU, the molecular basis of receptor activation involving non-conserved structural motifs of GPR84, and an unusual Gi-coupling interface. Together with computational docking and simulations studies, this structure also suggests a mechanism for the high selectivity of GPR84 for MCFAs and a potential routes of ligand binding and dissociation. These results provide a framework for understanding GPR84 signaling and developing new drugs targeting GPR84.


Subject(s)
Phagocytes , Signal Transduction , Macrophages , Phagocytosis , Fatty Acids
2.
Res Sq ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824923

ABSTRACT

GPR84 is a unique orphan G protein-coupled receptor (GPCR) that can be activated by endogenous medium-chain fatty acids (MCFAs). The signaling of GPR84 is largely pro-inflammatory, which can augment inflammatory response, and GPR84 also functions as a pro-phagocytic receptor to enhance the phagocytic activities of macrophages. In this study, we first showed that the activation of GPR84 by the synthetic agonist 6-OAU could synergize with the blockade of CD47 on cancer cells to induce phagocytosis of cancer cells by macrophages. Then, we determined a high-resolution structure of the GPR84-Gi signaling complex with 6-OAU. This structure revealed a completely occluded binding pocket for 6-OAU, the molecular basis of receptor activation involving non-conserved structural motifs of GPR84, and an unusual Gi-coupling interface. Together with computational docking and simulations studies, our structure also suggested the mechanism for the high selectivity of GPR84 for MCFAs and the potential routes of ligand binding and dissociation. Our results provide a framework for understanding GPR84 signaling and developing new drugs targeting GPR84.

3.
Nat Commun ; 11(1): 5430, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110062

ABSTRACT

Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia. The molecular mechanisms underlying enzyme catalysis and inhibition for SRD5A2 and other eukaryotic integral membrane steroid reductases remain elusive due to a lack of structural information. Here, we report a crystal structure of human SRD5A2 at 2.8 Å, revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the transmembrane domain. Structural analysis together with computational and mutagenesis studies reveal the molecular mechanisms of the catalyzed reaction and of finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region that regulate NADPH/NADP+ exchange. Mapping disease-causing mutations of SRD5A2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and may facilitate drug development.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry , Androgen Antagonists/chemistry , Finasteride/chemistry , Membrane Proteins/chemistry , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Amino Acid Motifs , Dutasteride/chemistry , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Dynamics Simulation , NADP/chemistry , NADP/metabolism
4.
Dis Model Mech ; 13(10)2020 10 15.
Article in English | MEDLINE | ID: mdl-32859697

ABSTRACT

The conserved B-subunit of succinate dehydrogenase (SDH) participates in the tricarboxylic acid cycle (TCA) cycle and mitochondrial electron transport. The Arg230His mutation in SDHB causes heritable pheochromocytoma/paraganglioma (PPGL). In Caenorhabditiselegans, we generated an in vivo PPGL model (SDHB-1 Arg244His; equivalent to human Arg230His), which manifests delayed development, shortened lifespan, attenuated ATP production and reduced mitochondrial number. Although succinate is elevated in both missense and null sdhb-1(gk165) mutants, transcriptomic comparison suggests very different causal mechanisms that are supported by metabolic analysis, whereby only Arg244His (not null) worms demonstrate elevated lactate/pyruvate levels, pointing to a missense-induced, Warburg-like aberrant glycolysis. In silico predictions of the SDHA-B dimer structure demonstrate that Arg230His modifies the catalytic cleft despite the latter's remoteness from the mutation site. We hypothesize that the Arg230His SDHB mutation rewires metabolism, reminiscent of metabolic reprogramming in cancer. Our tractable model provides a novel tool to investigate the metastatic propensity of this familial cancer and our approach could illuminate wider SDH pathology.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Iron-Sulfur Proteins/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Paraganglioma/genetics , Succinate Dehydrogenase/genetics , Adenosine Triphosphate/biosynthesis , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Citric Acid Cycle/genetics , Conserved Sequence , Disease Models, Animal , Gene Expression Profiling , Glycolysis/genetics , Humans , Iron-Sulfur Proteins/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Phenotype , Protein Subunits/genetics , RNA Interference , Succinate Dehydrogenase/chemistry
5.
Res Sq ; 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32702725

ABSTRACT

Human steroid 5α-reductase 2 (SRD5α2) as a critical integral membrane enzyme in steroid metabolism catalyzes testosterone to dihydrotestosterone. Mutations on its gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride as SRD5α2 inhibitors are widely used anti-androgen drugs for benign prostate hyperplasia, which have recently been indicated in the treatment of COVID-19. The molecular mechanisms underlying enzyme catalysis and inhibition remained elusive for SRD5α2 and other eukaryotic integral membrane steroid reductases due to a lack of structural information. Here, we report a crystal structure of human SRD5α2 at 2.8 Å revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the membrane. Structural analysis together with computational and mutagenesis studies reveals molecular mechanisms for the 5α-reduction of testosterone and the finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region regulating the NADPH/NADP + exchange. Mapping disease-causing mutations of SRD5α2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and will facilitate drug development.

6.
Structure ; 28(6): 635-642.e3, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32320671

ABSTRACT

In this work, we present a generalizable directed computational evolution protocol to effectively reduce the sequence space to be explored in rational enzyme design. The protocol involves in silico mutation modeling and substrate docking to rapidly identify mutagenesis hotspots that may enhance an enzyme's substrate binding and overall catalysis. By applying this protocol to a quorum-quenching Geobacillus kaustophilus lactonase, GKL, we generated 1,881 single mutants and docked high-energy intermediates of nine acyl homoserine lactones onto them. We found that Phe28 and Tyr99 were two hotspots that produced most of the predicted top 20 mutants. Of the 180 enzyme-substrate combinations (top 20 mutants × 9 substrates), 51 (28%) exhibited enhanced substrate binding and 22 (12%) had better overall activity when compared with wild-type GKL. X-ray crystallographic studies of Y99C and Y99P provided rationalized explanations for the enhancement in enzyme function and corroborated the utility of the protocol.


Subject(s)
Amidohydrolases/chemistry , Amidohydrolases/metabolism , Geobacillus/physiology , Mutation , Amidohydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Computer Simulation , Crystallography, X-Ray , Geobacillus/enzymology , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Quorum Sensing , Substrate Specificity
7.
PLoS Negl Trop Dis ; 13(12): e0007419, 2019 12.
Article in English | MEDLINE | ID: mdl-31830030

ABSTRACT

Despite Nipah virus outbreaks having high mortality rates (>70% in Southeast Asia), there are no licensed drugs against it. In this study, we have considered all 9 Nipah proteins as potential therapeutic targets and computationally identified 4 putative peptide inhibitors (against G, F and M proteins) and 146 small molecule inhibitors (against F, G, M, N, and P proteins). The computations include extensive homology/ab initio modeling, peptide design and small molecule docking. An important contribution of this study is the increased structural characterization of Nipah proteins by approximately 90% of what is deposited in the PDB. In addition, we have carried out molecular dynamics simulations on all the designed protein-peptide complexes and on 13 of the top shortlisted small molecule ligands to check for stability and to estimate binding strengths. Details, including atomic coordinates of all the proteins and their ligand bound complexes, can be accessed at http://cospi.iiserpune.ac.in/Nipah. Our strategy was to tackle the development of therapeutics on a proteome wide scale and the lead compounds identified could be attractive starting points for drug development. To counter the threat of drug resistance, we have analysed the sequences of the viral strains from different outbreaks, to check whether they would be sensitive to the binding of the proposed inhibitors.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Nipah Virus/drug effects , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Viral Proteins/chemistry
8.
Chem Sci ; 9(32): 6703-6710, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30310604

ABSTRACT

Cytochrome c oxidase (CcO) drives aerobic respiratory chains in all organisms by transducing the free energy from oxygen reduction into an electrochemical proton gradient across a biological membrane. CcO employs the so-called D- and K-channels for proton uptake, but the molecular mechanism for activation of the K-channel has remained elusive for decades. We show here by combining large-scale atomistic molecular simulations with graph-theoretical water network analysis, and hybrid quantum/classical (QM/MM) free energy calculations, that the K-channel is activated by formation of a reactive oxidized intermediate in the binuclear heme a 3/CuB active site. This state induces electrostatic, hydration, and conformational changes that lower the barrier for proton transfer along the K-channel by dewetting pathways that connect the D-channel with the active site. Our combined results reconcile previous experimental findings and indicate that water dynamics plays a decisive role in the proton pumping machinery in CcO.

9.
Angew Chem Int Ed Engl ; 57(2): 486-490, 2018 01 08.
Article in English | MEDLINE | ID: mdl-28980372

ABSTRACT

Tudor domains bind to dimethylarginine (DMA) residues, which are post-translational modifications that play a central role in gene regulation in eukaryotic cells. NMR spectroscopy and quantum calculations are combined to demonstrate that DMA recognition by Tudor domains involves conformational selection. The binding mechanism is confirmed by a mutation in the aromatic cage that perturbs the native recognition mode of the ligand. General mechanistic principles are delineated from the combined results, indicating that Tudor domains utilize cation-π interactions to achieve ligand recognition.


Subject(s)
Arginine/analogs & derivatives , Motor Neurons/metabolism , Tudor Domain , Arginine/chemistry , Arginine/metabolism , Protein Conformation , Protein Processing, Post-Translational , Quantum Theory , Thermodynamics
10.
Angew Chem Int Ed Engl ; 55(39): 11940-4, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27539738

ABSTRACT

Cytochrome c oxidase (CcO) is a redox-driven proton pump that powers aerobic respiratory chains. We show here by multi-scale molecular simulations that a protonated water cluster near the active site is likely to serve as the transient proton-loading site (PLS) that stores a proton during the pumping process. The pKa of this water cluster is sensitive to the redox states of the enzyme, showing distinct similarities to other energy converting proton pumps.


Subject(s)
Electron Transport Complex IV/chemistry , Water/chemistry , Animals , Catalytic Domain , Cattle , Electron Transport , Molecular Dynamics Simulation , Oxidation-Reduction , Protons
11.
J Phys Chem B ; 119(34): 11371-81, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-25993473

ABSTRACT

Water dynamics in the solvation shell around biomolecules plays a vital role in their stability, function, and recognition processes. Although extensively studied through various experimental and computational methods, dynamical time scales of water near DNA is highly debated. The residence time of water is one such dynamical quantity that has been probed rarely around DNA using computational methods. Moreover, the effect of local DNA sequence variation in water residence time has also not been addressed. Using 20 DNA systems with different sequences, we capture here the mean residence time (MRT) of water molecules around 360 different sites in the major and minor grooves of DNA. Thus, we show that a distribution of time scales exists even for a regular structure of DNA, reflecting the effect of chemistry, topography, and other factors governing dynamics of water. We used the stable state picture (SSP) formalism to calculate MRT that avoids the effect of transient recrossing. Results obtained from simulations agree well with experiments done on a few specific systems at a similar temperature. Most importantly, we find that although the groove width and depth influence water time scale, MRT of water is always longer in the middle of the DNA, in agreement with NMR experiments. We propose a simple kinetic model of water escape from DNA where water molecules move along the DNA and perpendicular to it in both the first and second solvation shell before it escapes to bulk. We show that this simple kinetic model captures both the time scale and the position dependence of MRT of water around DNA. This study thus portrays the origin and a measure of heterogeneity in water dynamics around DNA and provides a fresh perspective in the ongoing debate on water dynamical time scales around DNA.


Subject(s)
Computer Simulation , DNA/chemistry , Water/chemistry , Base Pairing , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL