Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 8(10): 2084-2095, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36062478

ABSTRACT

Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortalities and morbidities worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a family of macrocycle chemical compounds existing as a range of homologues; due to their structure, they can bind to biological materials, acting as supramolecular "hosts" to "guests", such as amino acids. Due to the increasing need for a nontoxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including herpes simplex virus 2 (HSV-2), respiratory syncytial virus (RSV) and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n], having an antiviral effect against enveloped and nonenveloped species. High levels of efficacy were observed with 5 min contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalization or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals), demonstrating the potential of supramolecular interactions for future antiviral disinfectants.


Subject(s)
COVID-19 , Disinfectants , Macrocyclic Compounds , Amino Acids , Antiviral Agents/pharmacology , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Humans , Imidazoles/chemistry , Macrocyclic Compounds/chemistry , Membrane Proteins , SARS-CoV-2
2.
F1000Res ; 8: 108, 2019.
Article in English | MEDLINE | ID: mdl-31275563

ABSTRACT

Background: Fc-mannose-binding lectin (FcMBL), an engineered version of the blood opsonin MBL that contains the carbohydrate recognition domain (CRD) and flexible neck regions of MBL fused to the Fc portion of human IgG1, has been shown to bind various microbes and pathogen-associated molecular patterns (PAMPs). FcMBL has also been used to create an enzyme-linked lectin sorbent assay (ELLecSA) for use as a rapid (<1 h) diagnostic of bloodstream infections. Methods: Here we extended this work by using the ELLecSA to test FcMBL's ability to bind to more than 190 different isolates from over 95 different pathogen species. Results: FcMBL bound to 85% of the isolates and 97 of the 112 (87%) different pathogen species tested, including bacteria, fungi, viral antigens and parasites. FcMBL also bound to PAMPs including, lipopolysaccharide endotoxin (LPS) and lipoteichoic acid (LTA) from Gram-negative and Gram-positive bacteria, as well as lipoarabinomannan (LAM) and phosphatidylinositol mannoside 6 (PIM 6) from Mycobacterium tuberculosis. Conclusions: The efficiency of pathogen detection and variation between binding of different strains of the same species could be improved by treating the bacteria with antibiotics, or mechanical disruption using a bead mill, prior to FcMBL capture to reveal previously concealed binding sites within the bacterial cell wall. As FcMBL can bind to pathogens and PAMPs in urine as well as blood, its broad-binding capability could be leveraged to develop a variety of clinically relevant technologies, including infectious disease diagnostics, therapeutics, and vaccines.


Subject(s)
Anti-Bacterial Agents , Bacteria , Mannose-Binding Lectin , Fungi , Humans , Lectins, C-Type , Mannose/metabolism , Mannose-Binding Lectin/pharmacology
3.
Nat Biotechnol ; 32(11): 1134-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25306244

ABSTRACT

Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.


Subject(s)
Biofouling/prevention & control , Coated Materials, Biocompatible/therapeutic use , Thrombosis/prevention & control , Animals , Biofilms/drug effects , Catheters/microbiology , Equipment and Supplies/microbiology , Humans , Surface Properties , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...