Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 855682, 2022.
Article in English | MEDLINE | ID: mdl-35360010

ABSTRACT

Objective: Recreational SCUBA (rSCUBA) diving has become a highly popular and widespread sport. Yet, information on molecular events underlying (patho)physiological events that follow exposure to the specific environmental conditions (hyperbaric conditions, coldness, immersion, and elevated breathing pressure), in which rSCUBA diving is performed, remain largely unknown. Our previous study suggested that repeated rSCUBA diving triggers an adaptive response of cardiovascular and immune system. To elucidate further molecular events underlying cardiac and immune system adaptation and to exclude possible adverse effects we measured blood levels of specific cardiac and inflammation markers. Methods: This longitudinal intervention study included fourteen recreational divers who performed five dives, one per week, on the depth 20-30 m that lasted 30 min, after the non-dive period of 5 months. Blood samples were taken immediately before and after the first, third, and fifth dives. Copeptin, immunoglobulins A, G and M, complement components C3 and C4, and differential blood count parameters, including neutrophil-to-lymphocyte ratio (NLR) were determined using standard laboratory methods. Cell-free DNA was measured by qPCR analysis and N-glycans released from IgG and total plasma proteins (TPP), were analyzed by hydrophilic interaction ultra-performance liquid chromatography. Results: Copeptin level increased after the first dive but decreased after the third and fifth dive. Increases in immunoglobulins level after every dive and during whole studied period were observed, but no changes in C3, C4, and cfDNA level were detected. NLR increased only after the first dive. IgG and TPP N-glycosylation alterations toward anti-inflammatory status over whole studied period were manifested as an increase in monogalyctosylated and core-fucosylated IgG N-glycans and decrease in agalactosylated TPP N-glycans. Conclusion: rSCUBA diving practiced on a regular basis promotes anti-inflammatory status thus contributing cardioprotection and conferring multiple health benefits.

2.
Biochem Med (Zagreb) ; 31(1): 010708, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33594297

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological tests have been suggested as an additional diagnostic tool in highly suspected cases with a negative molecular test and determination of seroprevalence in population. We compared the diagnostic performance of eight commercial serological assays for IgA, IgM, and IgG antibodies to the SARS-CoV-2 virus. MATERIALS AND METHODS: The comparison study was performed on a total of 76 serum samples: 30 SARS-CoV-2 polymerase chain reaction (PCR)-negative and 46 SARS-CoV-2 PCR-positive patients with asymptomatic to severe disease and symptoms duration from 3-30 days. The study included: three rapid lateral flow immunochromatographic assays (LFIC), two enzyme-linked immunosorbent assays (ELISA), and three chemiluminescence immunoassays (CLIA). RESULTS: Agreement between IgM assays were minimal to moderate (kappa 0.26 to 0.63) and for IgG moderate to excellent (kappa 0.72 to 0.92). Sensitivities improved with > 10 days of symptoms and were: 30% to 89% for IgM; 89% to 100% for IgG; 96% for IgA; 100% for IgA/IgM combination; 96% for total antibodies. Overall specificities were: 90% to 100% for IgM; 85% to 100% for IgG; 90% for IgA; 70% for IgA/IgM combination; 100% for total antibodies. Diagnostic accuracy for IgG ELISA and CIA assays were excellent (AUC ≥ 0.90), without significant difference. IgA showed significantly better diagnostic accuracy than IgM (P < 0.001). CONCLUSION: There is high variability between IgM assays independently of the assay format, while IgG assays showed moderate to perfect agreement. The appropriate time for testing is crucial for the proper immunity investigation.


Subject(s)
COVID-19 Testing/methods , COVID-19 Testing/standards , COVID-19/diagnosis , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Serologic Tests/methods
3.
Physiol Rep ; 9(2): e14691, 2021 01.
Article in English | MEDLINE | ID: mdl-33463896

ABSTRACT

It has been shown that one recreational SCUBA (rSCUBA) diving session is sufficient to cause changes in plasma level of cardiovascular (CV) and muscular biomarkers. To explore whether repetitive rSCUBA diving triggers an adaptive response of the CV, muscular, and immune system, we measured the cardiac damage (NT-proBNP, hs-TnI, and CK-MB), muscle damage (myoglobin (Mb), galectin-3, CK, and LDH), vascular endothelial activation (ET-1 and VEGF), and inflammatory (leukocyte count (Lkc), CRP, and IL-6) biomarkers. A longitudinal intervention study included divers (N = 14) who conducted one dive per week over 5 weeks at the depth of 20-30 m for 30 min after a non-dive period of 5 months. The blood samples were collected before and after the first, third, and fifth dives and specific biomarkers were measured in plasma or serum by the standard laboratory methods. The concentrations of the majority of measured biomarkers increased after every single dive; the exception was ET-1 concentration that decreased. The cumulative effect of five dives has been reflected in diminishing changes in hs-TnI, Mb, galectin-3, ET-1, VEGF, and IL-6 levels, and more pronounced increases in NT-proBNP and hs-CRP levels. The median values of all measured biomarkers in all time points, except Mb, remained within the corresponding reference range. Repeatedly performed rSCUBA diving activates an adaptive response of the CV, muscular, and immune system that is reflected in changes in the specific biomarker concentration.


Subject(s)
Adaptation, Physiological/physiology , Biomarkers/metabolism , Cardiovascular System/metabolism , Diving/physiology , Endothelium, Vascular/metabolism , Muscles/metabolism , Adult , Biomarkers/blood , Endothelin-1/metabolism , Humans , Immunity , Interleukin-6/blood , Leukocyte Count/methods , Longitudinal Studies , Male , Middle Aged , Myoglobin/blood , Receptors, Immunologic/blood
4.
Biochem Med (Zagreb) ; 30(1): 010702, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31839722

ABSTRACT

INTRODUCTION: Clinical application of rivaroxaban and apixaban does not require therapeutic monitoring. Commercial anti-activated factor X (anti-FXa) inhibition methods for all anti-FXa drugs are based on the same principle, so there are attempts to evaluate potential clinical application of heparin-calibrated anti-FXa assay as an alternative method for direct FXa inhibitors. We aimed to evaluate relationship between anti-FXa methods calibrated with low molecular weight heparin (LMWH) and with drug specific calibrators, and to determine whether commercial LMWH anti-FXa assay can be used to exclude the presence of clinically relevant concentrations of rivaroxaban and apixaban. MATERIALS AND METHODS: Low molecular weight heparin calibrated reagent (Siemens Healthineers, Marburg, Germany) was used for anti-FXa activity measurement. Innovance heparin (Siemens Healthineers, Marburg, Germany) calibrated with rivaroxaban and apixaban calibrators (Hyphen BioMed, Neuville-sur-Oise, France) was used for quantitative determination of FXa inhibitors. RESULTS: Analysis showed good agreement between LMWH calibrated and rivaroxaban calibrated activity (κ = 0.76) and very good agreement with apixaban calibrated anti-Xa activity (κ = 0.82), respectively. Low molecular weight heparin anti-FXa activity cut-off values of 0.05 IU/mL and 0.1 IU/mL are suitable for excluding the presence of clinically relevant concentrations (< 30 ng/mL) of rivaroxaban and apixaban, respectively. Concentrations above 300 ng/mL exceeded upper measurement range for LMWH anti-FXa assay and cannot be determined by this method. CONCLUSION: Low molecular weight heparin anti-FXa assay can be used in emergency clinical conditions for ruling out the presence of clinically relevant concentrations of rivaroxaban and apixaban. However, use of LMWH anti-FXa assay is not appropriate for their quantitative determination as an interchangeable method.


Subject(s)
Anticoagulants/chemistry , Blood Coagulation Tests/methods , Heparin, Low-Molecular-Weight/chemistry , Pyrazoles/chemistry , Pyridones/chemistry , Rivaroxaban/chemistry , Anticoagulants/metabolism , Area Under Curve , Blood Coagulation Tests/standards , Calibration , Chromogenic Compounds/chemistry , Factor Xa/chemistry , Factor Xa/metabolism , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/metabolism , Heparin, Low-Molecular-Weight/metabolism , Humans , Pyrazoles/metabolism , Pyridones/metabolism , ROC Curve
5.
Mol Cell Proteomics ; 10(10): M111.010090, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21653738

ABSTRACT

All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously. Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.


Subject(s)
Glycomics/methods , Glycoproteins/chemistry , High-Throughput Screening Assays , Immunoglobulin G/chemistry , Adolescent , Adult , Aged , Aged, 80 and over , Female , Fucose/metabolism , Genetic Variation , Glycoproteins/genetics , Glycoproteins/isolation & purification , Glycosylation , Humans , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Male , Middle Aged , Models, Molecular , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Polysaccharides/chemistry , Population , ortho-Aminobenzoates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...